Jarred Green
MAGIC Meeting Siena — 9 June 2025
Max Planck Institute for Physics
jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
Raw Data
Images
{
'size': 546.8863769783503,
'xc': -3.7898364035228065,
'yc': 7.294274369102854,
'length': 7.767692666363586,
'width': 1.7648053936769377,
'delta': -0.5687518727314761,
...
}
Parameters
Jarred Green - jgreen@mpp.mpg.de
A way to include as much information as possible?
Jarred Green - jgreen@mpp.mpg.de
Proton
Gamma
Muon
Find a new ways to represent raw data
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
Lets go from images
to graphs
Credit: J. Leskovec (Stanford CS224)
for MAGIC?
GNNs can effectively deal with
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
time
Jarred Green - jgreen@mpp.mpg.de
time
Jarred Green - jgreen@mpp.mpg.de
time
Real data event
Can we 'steal' this timing information from OFF data?
YES!
"time calibration pasting"
GNNs with
calibrated graphs
1️⃣
Jarred Green - jgreen@mpp.mpg.de
Can we 'steal' this timing information from OFF data?
YES!
"time calibration pasting"
GNNs with
calibrated graphs
1️⃣
Jarred Green - jgreen@mpp.mpg.de
time
Can we make these graphs smaller somehow?
cleaning!
GNN with
cleaned graphs
2️⃣
an IceCube case study
Credit: R. Abbasi et al. [arXiv:2209.03042]
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
Goal: get calibrated data with timing information
MARS - sorcerer
Python package magic-gnn
.parquet or LMDB files exported, about ~1GB / min of data
stereo event matching
GNN with
cleaned graphs
GNNs with
calibrated graphs
Calibration
MExportCSV
MExportParquet
data standardization
time calibration pasting
Python package magic-gnn
Jarred Green - jgreen@mpp.mpg.de
Goal: get calibrated data with timing information
MARS - sorcerer
Python package magic-gnn
.parquet or LMDB files exported, about ~1GB / min of data
stereo event matching
GNN with
cleaned graphs
GNNs with
calibrated graphs
Calibration
MExportCSV
MExportParquet
data standardization
time calibration pasting
Python package magic-gnn
✅
✅
2️⃣
1️⃣
Jarred Green - jgreen@mpp.mpg.de
Training Data: 150K MC events, za05to35, ST0307
GNN with
cleaned graphs
GNNs with
calibrated graphs
2️⃣
1️⃣
Real Data: ST0307 Crab Nebula and Triangulum II (OFF)
Join the Deep Learning group!
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
1. Trigger + 2. Raw data
Jarred Green - jgreen@mpp.mpg.de
3. Image cleaning
Jarred Green - jgreen@mpp.mpg.de
4. Image parameterization
{
'size': 546.8863769783503,
'xc': -3.7898364035228065,
'yc': 7.294274369102854,
'length': 7.767692666363586,
'width': 1.7648053936769377,
'delta': -0.5687518727314761,
...
}
"Hillas Parameters" (1977!)
{
'size': 546.8863769783503,
'xc': -3.7898364035228065,
'yc': 7.294274369102854,
'length': 7.767692666363586,
'width': 1.7648053936769377,
'delta': -0.5687518727314761,
...
}
"Hillas Parameters"
Random Forest
The ML part
Jarred Green - jgreen@mpp.mpg.de
{
'size': 546.8863769783503,
'xc': -3.7898364035228065,
'yc': 7.294274369102854,
'length': 7.767692666363586,
'width': 1.7648053936769377,
'delta': -0.5687518727314761,
...
}
tl;dr
ML
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
Is there a deep learning model where we can keep as much information as possible from RAW data?
{
'size': 546.8863769,
'xc': -3.7898364035,
'yc': 7.294274369,
'length': 7.767692666,
'width': 1.7648053936,
'delta': -0.5687518727,
...
}
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
➡️ Look at IceCube Kaggle competition
Jarred Green - jgreen@mpp.mpg.de
➡️ Investigate point cloud object detection
Interesting GNN model:
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud