joost.jorritsma@stats.ox.ac.uk
Erdős–Rényi random graph \(G(n, \lambda /n)\)
Bernoulli percolation on \(\mathbb{Z}^2\) w.p. \(p\)
Motivation
Motivation
Aim for this talk
Motivation
Aim for this talk
Geom. Inhom. RG
Hyperbolic RG
Geom. RG
Long-range perc.
Scale-free Gilbert RG
Age-dependent RCM
Theorem. When \(\tau<2\) or \(\alpha<1\):
[Deijfen, v.d. Hofstad, Hooghiemstra '13], [Gracar, Grauer, Lüchtrath, Mörters '18]
[Heydenreich, Hulshof, J. '17], [Hirsch '17], [v.d. Hofstad, v.d. Hoorn, Maitra '22],
[J., Komjáthy, Mitsche, '23], [Lüchtrath '22]
Theorem. When \(\tau>2\) and \(\alpha>1\):
$$\mathbb{P}(\mathrm{deg}(0)\ge k)\sim k^{-(\tau-1)}.$$
\(\tau\) small: many hubs
\(\alpha\) small: many long edges
Hyperbolic random graph
Scale-free percolation
Long-range percolation
Scale-free Gilbert RG
Random geom. graph
Nearest-neighbor percolation
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=p\bigg(\frac{\beta\cdot \phantom{(w_u\cdot w_v)}}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
Vertex set \(\mathcal{V}_\infty\)
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=p\bigg(\frac{\beta\cdot (w_u\cdot w_v)}{\|x_u-x_v\|^d}\wedge 1\bigg)^\alpha$$
Connection probability
$${\color{grey}\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta}\frac{\kappa(w_u, w_v)}{\color{grey}\|x_u-x_v\|^d}{\color{grey}\bigg)^\alpha\wedge 1}$$
A parameterized kernel: \(\sigma\ge 0\)
$$\kappa_{\sigma}(w_u, w_v):=\max\{w_u, w_v\}\min\{w_u, w_v\}^\sigma$$
SFP/GIRG
Hyperbolic RG
Age-dep. RCM
Scale-free Gilbert
Long-range percolation
Random geom. graph
Nearest-neighbor percolation
Theorem. When \(\tau>2\):
Theorem. When \(\tau<2\):
$$\mathbb{P}(\mathrm{deg}(0)\ge k)\sim k^{-(\tau_\mathrm{deg}-1)}.$$
[Deijfen, v.d. Hofstad, Hooghiemstra '13]
[Gracar, Grauer, Lüchtrath, Mörters '18]
[Heydenreich, Hulshof, Jorritsma '17]
[Hirsch '17]
[v.d. Hofstad, v.d. Hoorn, Maitra, '22]
[Jorritsma, K., Mitsche, '23]
[Lüchtrath '22]
Theorem. When \(\tau<2\):
Theorem. When \(\tau>2\):
$${\color{grey}\mathbb{P}(\mathrm{deg}(0)\ge k)\sim k^{-(\tau_\mathrm{deg}-1)}.}$$
FINAL SIZE
Randomized optimization algorithms
Optimization under chance constraints
Sampling algorithms for explainable AI
Vertex set
Edge more likely if
Percolation: Reed-Frost epidemic
New phenomena
Challenges
Figure by Igor Kortchemski
Setup
Goal
Department Away Day `24
Department Away Day `24
~1969: 2 connected sites
Time
~1989: 0.5 million users
~2023: billions of devices
~1999: 248 million users
1999
\(\mathrm{dist}_{\color{red}{'99}}(u_{'99}, v_{'99}) = 4\)
2005
\(\mathrm{dist}_{{\color{red}'05}}(u_{'99}, v_{'99}) = 3\)
2024
\(\mathrm{dist}_{{\color{red}'24}}(u_{'99}, v_{'99}) = 2\)
21 possible networks
Attachment rule:
Prefer connecting to high-degree vertices, \(\tau\): tail of power-law degree distribution
2005
\(\phantom{\mathrm{dist}_{{\color{red}'05}}(u_{'99}, v_{'99}) = 3}\)
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\overset{\mathbb{P}}\longrightarrow 0.$$
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(\phantom{t'=T_t(a):=t\exp\big(\log^a(t)\big)}\) for \(\phantom{a\in[0,1]}\), then
$$ \phantom{\sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\overset{\mathbb{P}}{\longrightarrow} 0.}$$
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \phantom{\sup_{a\in[0,1]}} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} \phantom{- (1-a)\frac{4}{|\log(\tau-2)|}}\right|\phantom{\overset{\mathbb{P}}\longrightarrow 0.}$$
Dynamics in PAMs.
Generalization with edge weights: random transmission times
Novelties
Fast spreading among influentials;
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \sup_{a\in[0,1]} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\phantom{\overset{\mathbb{P}}\longrightarrow 0.}$$
Theorem [J., Komjáthy, Annals of Applied Probability '22]. Assume \(\tau<3\).
Let \(t'=T_t(a):=t\exp\big(\log^a(t)\big)\) for \(a\in[0,1]\), then
$$ \phantom{\sup_{a\in[0,1]}} \left| \frac{\mathrm{dist}_{T_t(a)}(U_t, V_t)}{\log\log(t)} - (1-a)\frac{4}{|\log(\tau-2)|}\right|\phantom{\overset{\mathbb{P}}\longrightarrow 0.}$$
FINAL SIZE
Large deviations (rare events) of cluster sizes
Only four parameters
Vertex set
Edge more likely if
Hyperbolic random graph
Scale-free percolation
Long-range percolation
Bond percolation on \(\mathbb{Z}^d\)
Theorem (\(\mathbb{Z}^d\)-like graphs)
[Lebowitz & Schonmann '88; Gandolfi '89; Grimmett, Marstrand '90;
Kesten, Zhang '90; Alexander, Chayes, Chayes, Newman '90; Pisztora '96;
Cerf '97; Contreras, Martineau, Tassion '2024; ...]
Lower tail:
Surface tension drives too small cluster
Upper tail:
Large clusters are very unlikely
Figure by Tobias Muller
Hyperbolic random graph
Scale-free percolation
Long-range percolation
Bond percolation on \(\mathbb{Z}^d\)
Theorem (\(\mathbb{Z}^d\)-like graphs)
[Lebowitz & Schonmann '88; Gandolfi '89; Grimmett, Marstrand '90;
Kesten, Zhang '90; Alexander, Chayes, Chayes, Newman '90; Pisztora '96;
Cerf '97; Contreras, Martineau, Tassion '2024; ...]
Lower tail:
Surface tension drives too small cluster
Upper tail:
Large clusters are very unlikely
Question:
Long edges and high-degree vertices,
do they matter?
Theorem [J., Komjáthy, Mitsche, '24+]
We find explicit \(\zeta\in[1/2,1)\), \(\theta\in(0,1)\) s.t.
Novelties
Reversed discrepancy: large outbreak likelier than small.
Long edges can beat surface tension: any ;
governs second-largest cluster, and cluster of 0
Techniques: probability, combinatorics, optimization.
FINAL SIZE
Ongoing
Near future
Opportunities Leiden
Ongoing
Opportunities Leiden
Near future (invitations)
Opportunities Leiden: Lorentz Center
Organisational experience:
RandNET Workshop (with Serte Donderwinkel)