joost.jorritsma@stats.ox.ac.uk
Erdős–Rényi random graph \(G(n, \lambda /n)\)
Bernoulli percolation on \(\mathbb{Z}^2\) w.p. \(p\)
Motivation
Motivation
Aim for this talk
Adapted from Network Science (2015), A.L. Barabási
Vertex set \(\mathcal{V}_\infty\)
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{w_uw_v}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1$$
Vertex set \(\mathcal{V}_\infty\)
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{w_uw_v}{\|x_u-x_v\|^d}\bigg)^\alpha$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{\bigg(\beta}\frac{w_uw_v}{\phantom{\|x_u-x_v\|^d}}\phantom{\bigg)^\alpha\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{\bigg(\beta}\frac{w_uw_v}{\|x_u-x_v\|^d}\phantom{\bigg)^\alpha\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\phantom{\beta}\frac{w_uw_v}{\|x_u-x_v\|^d}\bigg)^\alpha\phantom{\wedge 1}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)$$
Figure by Tobias Müller
Figure by Tobias Müller
Boguñá, Papadopoulos & Krioukov (2010, Nature comm.)
[Odor, Czifra, Komjáthy, Lovasz, Karsai '21; Komjáthy, Lapinskas, Lengler '21]
Vertex set \(\mathcal{V}_\infty\)
Edge set \(\mathcal{E}_\infty\)
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\phantom{p\bigg(}\bigg(\beta\frac{w_uw_v}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1\phantom{\bigg)}$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=p\bigg(\bigg(\beta\frac{w_uw_v}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1\bigg)$$
Bernoulli percolation on \(\mathbb{Z}^2\) w.p. \(p\)
Geometric inhomogeneous random graph
GIRGs contain an infinite component when
Deijfen, vdHofstad, Hooghiemstra '13; Fountoulakis, Müller '18; Bringmann, Keusch, Lengler '19; Gracar, Lüchtrath, Mönch '25]
[J., Komjáthy, Mitsche '24, '24, '25]
Second-largest component,
(Finite) Component of the origin
Asymptotic size-distribution, and shape
determined by variational problem
Trade-off between
Are these the only three possible shapes?
Hyperbolic random graph
GIRG
Long-range percolation
Spatial preferential attachment
Random geom. graph
Nearest-neighbor percolation
Connection probability
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{w_uw_v}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1$$
$$\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta\frac{\kappa(w_u,w_v)}{\|x_u-x_v\|^d}\bigg)^\alpha\wedge 1$$
Kernel \(\kappa\):
Komjáthy, Lodewijks '18; Gracar, Heydenreich, Mönch, Mörters '19; Jorritsma, Komjáthy, Mitsche '24; Gracar, Lüchtrath, Mönch '25]
Connection probability
$${\color{grey}\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta}\frac{\kappa(w_u, w_v)}{\color{grey}\|x_u-x_v\|^d}{\color{grey}\bigg)^\alpha\wedge 1}$$
A parameterized kernel: \(\sigma\ge 0\)
$$\kappa_{\sigma}(w_u, w_v):=\max\{w_u, w_v\}\min\{w_u, w_v\}^\sigma$$
GIRG
Hyperbolic RG
Spatial pref. attachment
Scale-free Gilbert
Long-range percolation
Random geom. graph
Nearest-neighbor percolation
Connection probability
$${\color{grey}\mathbb{P}\big(u\leftrightarrow v\mid \mathcal{V}_\infty\big)=\bigg(\beta}\frac{\kappa(w_u, w_v)}{\color{grey}\|x_u-x_v\|^d}{\color{grey}\bigg)^\alpha\wedge 1}$$
A parameterized kernel, \(\sigma\in\mathbb{R}:\)
$$\kappa_{\sigma}(w_u, w_v):=\max\{w_u, w_v\}\min\{w_u, w_v\}^\sigma$$
Assortativity parameter
Theorem. When \(\sigma<\tau-1\) :
$$\big(\mathrm{deg}(v)\mid w_v=w\big) \sim \mathrm{Poi}(cw_v)$$
$$\mathbb{P}(w_v\ge w)=w^{-(\tau-1)},\quad \tau>2.$$
[Kaufmann, Schaller, Bläsius, Lengler '25+; Litvak, vdHofstad '13]
Degree-degree correlation of edges
Correlation measures
(Pearson, Spearman, Kendall)
offer less/no insight
Plots based on
$$\frac{\mathbb{P}(\mathrm{degree}(v)=y\mid \mathrm{degree}(u)=x)}{\mathbb{P}(\mathrm{degree}(v)=y)}$$
[Kaufmann, Schaller, Bläsius, Lengler '25+]
Degree-degree correlation of edges
joost.jorritsma@stats.ox.ac.uk