\text{Learning-based Computer Vision with Neural Networks}
\textbf{Naresh Kumar Devulapally}
\text{CSE 4/573: Computer Vision and Image Processing}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Lectures 10, 11: July 1, 3 - 2025}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
  • What is a function?
  • Basics of Neural Networks (NNs) (Recap)
  • Neural Networks for Classification
  • Image Classification using Feedforward NNs
  • Features help NNs
  • Convolutional Neural Networks
  • Important components of an NN pipeline
  • Object Detection
  • Semantic Segmentation
  • Monocular Depth Estimation
  • Midterm Recap (what to focus to score well)

\( \text{Agenda of this Lecture:}\)

\text{July 1, 3 - 2025}
\text{Learning-based Computer Vision with Neural Networks}
\text{What is a Function?}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
y = f(x)
\text{What is a Function?}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
y = f(x)

There are many ways to estimate a function \( y = f(x) \) based on data points. Discussion of such methods is outside the scope of this lecture.

In this lecture, we will discuss about powerful function approximators known as:

\text{Neural Networks}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Neural Networks}
\hat{y}_j = \omega^{(3)}_{j,1} \cdot g \Big( \sum_{i=1}^{3} \omega^{(2)}_{1,i} x_i + b^{(2)}_{1} \Big), \quad j = 1,2
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Neural Networks}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Neural Networks}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Neural Networks}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Neural Networks}
y = sin(x) + 0.1 * \mathcal{N}(0, 1)

Noise

NNs for function approximation (Regression)

\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{NNs for Classification (Loss and Activation)}
\hat{y} = \sigma(w_1 x_1 + w_2 x_2 + b)

Activation function

(Sigmoid for Binary Classfication)

\mathcal{L} = - \big[\, y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}) \big]
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{NNs for Classification (Loss and Activation)}

Multi-class classification

\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{NNs for Classification (Loss and Activation)}

Takeaway: Loss and Activation change depending on the task at hand.

\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{NNs for Classification (Larger Networks)}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{NNs for Classification (Images)}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{NNs for Classification (Images)}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Features help Neural Networks}
\text{Prediction without new features}
\text{Prediction WITH new features}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Features help Neural Networks}

What are those features in Images?

=
1
1
1
1
1
1
1
1
1
\frac{1}{9}
\times
-1
0
1
-2
-1
0
2
0
1
\frac{1}{9}
\times
=
-1
0
1
0
0
2
1
\frac{1}{9}
\times
\text{Blur}
\text{Vertical}
\text{Edges}
\text{Horizontal}
\text{Edges}
=
-1
-2
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Features help Neural Networks}

What are those features in Images?

\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Convolutional Neural Networks}

Feature Maps

was 0.2873 without Conv.

\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Convolutional Neural Networks}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Convolutional Neural Networks}

VGG (2014)

ResNet (2015)

\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Convolutional Neural Networks}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Object Detection}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Object Detection}

Code available in Course Website

\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Segmentation}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Segmentation}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Depth Estimation}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Depth Estimation}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Many More}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Many More}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Many More}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{July 1, 3 - 2025}
\text{Applications of NNs in CV: Many More}