\text{Image Processing (Fourier Domain)}
\textbf{Naresh Kumar Devulapally}
\text{CSE 4/573: Computer Vision and Image Processing}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}
\text{Lectures 5: June 10, 2025}
\text{Image Processing}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
  • What is a Fourier Domain?
  • How can images be converted to Fourier Domain?
  • What are the advantages of Image Processing in Fourier Domain?
  • Quantitative results of the gains in image processing.

\( \text{Agenda of this Lecture:}\)

\text{June 10, 2025}
\text{Time/Space Domain}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}
  • A time-domain function describes how a quantity changes with time or space.
  • Examples we see daily:
    • Audio waveforms: \( f(t) \) = amplitude of sound at time \( t \).
    • Temperature readings:  \( T(x) \) = temperature at position \( x \).

Mathematically: \( f(t): \mathbb{R} \to \mathbb{R} \) 

\text{Frequency (Fourier) Domain}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}
  • The frequency domain expresses a signal as a sum of sinusoids.
  • Instead of analyzing when things happen, we analyze what frequencies are present.

Example:

\( f(t) = \sin(2\pi \cdot 5t) \)

A 5 Hz sine wave has one spike at 5 Hz in frequency domain.

Fourier Transform:

\( F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t} \, dt\)

\text{Frequency (Fourier) Domain}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}
\text{Frequency (Fourier) Domain}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}

Head over to course website to interact with all these plots

\text{Interpretation of Image as a Function}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}

An image can be modeled as a 2D function:

\( I(x, y): \mathbb{R}^2 \to \mathbb{R} \)

\text{Fourier Transform of Images}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}
  • Center of FFT image: Low frequencies
    • Smooth background, global patterns
  • ​Corners of FFT image: High frequencies
    • Sharp transitions, edges, textures
\text{Fourier Transform of Images}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}

But Why Fourier Domain?

\text{Fourier Transform of Images}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}
\text{Fourier Transform of Images}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}

Any ongoing projects on this?

scipy.fftconvolve

FFC - Neurips 2020

\text{Fourier Transform of Images}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}
\text{Fourier Transform of Images}
\text{Naresh Kumar Devulapally}
\text{CSE 4/573: CVIP, Summer 2025}
\text{June 10, 2025}

That ends image processing in the Fourier Domain