BHEX Mini

A LEO SmallSat Partner to BHEX

Ref Bari

  • Mission Statement
  • Antenna Diameter Trade Space
  • Visibility Amplitudes of Secondary Targets
  • Thermal Noise Requirements (Mia)

BHEX Mini

Mission Statement

\textbf{Secondary Science Objective: }\text{Resolve extended black hole structure}
\text{Image black hole accretion disk at low frequency}
\text{Increase number of short Space-Ground baselines}
\text{Achieve first Space-Space VLBI}

Mission Statement

Mission Statement

\sim 10\text{ new VLBI stations to EHT array}

Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}

Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}

Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}

Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
\text{multi-frequency observations possibly}\\\text{increase coherence time } \Delta t

Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
\text{multi-frequency observations possibly}\\\text{increase coherence time } \Delta t
\text{standalone observations of secondary}\\ \text{ science targets at 86 GHz}
  • Mission Statement
  • Antenna Diameter Trade Space
  • Visibility Amplitudes of Secondary Targets
  • Thermal Noise Requirements (Mia)

BHEX Mini

  • Mission Statement
  • Antenna Diameter Trade Space
  • Visibility Amplitudes of Secondary Targets
  • Thermal Noise Requirements (Mia)

BHEX Mini

D= 1m
D= 2m
D= 3m

Antenna Diameter Trade Space

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\downarrow
\downarrow
\uparrow
\uparrow
?
?
?
?
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{BHEX Mini Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{BHEX Mini Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\downarrow
\downarrow
\uparrow
\uparrow
?
?
?
?
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Solar Flux}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{BHEX Mini Area}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Absorptivity}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Eclipse Factor}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Eclipse Factor}
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
\phi(t) = \frac{2\pi t}{T_{\text{orbit}}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{BHEX Mini Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
Q_{\text{Earth-IR}} = \varepsilon \cdot \sigma \cdot T_E^4 \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}}
\text{BHEX Mini Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
Q_{\text{Earth-IR}} = \varepsilon \cdot \sigma \cdot T_E^4 \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}}
Q_{\text{cooling}} = \varepsilon \cdot \sigma \cdot T_{\text{sat}}^4 \cdot A_{\text{total}}
\text{Thermal Load } P
\text{Coherence Time } t
\uparrow
\text{Thermal Load } P
\text{Coherence Time } t
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
  • Technology Readiness Level (TRL)
  • Areal Density
    • Material of Antenna
    • Type of Antenna
  • Surface Accuracy
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
  • Technology Readiness Level (TRL)
  • Areal Density
    • Material of Antenna
    • Type of Antenna
  • Surface Accuracy
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow