BHEX Mini
A LEO SmallSat Partner to BHEX
Ref Bari
Mission Statement
Antenna Diameter Trade Space
Visibility Amplitudes of Secondary Targets
Thermal Noise Requirements (Mia)
BHEX Mini
Mission Statement
\textbf{Secondary Science Objective: }\text{Resolve extended black hole structure}
\text{Image black hole accretion disk at low frequency}
\text{Increase number of short Space-Ground baselines}
\text{Achieve first Space-Space VLBI}
Mission Statement
Mission Statement
\sim 10\text{ new VLBI stations to EHT array}
Mission Statement
\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
Mission Statement
\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
Mission Statement
\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
Mission Statement
\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
\text{multi-frequency observations possibly}\\\text{increase coherence time } \Delta t
Mission Statement
\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}
\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
\text{multi-frequency observations possibly}\\\text{increase coherence time } \Delta t
\text{standalone observations of secondary}\\ \text{ science targets at 86 GHz}
Mission Statement
Antenna Diameter Trade Space
Visibility Amplitudes of Secondary Targets
Thermal Noise Requirements (Mia)
BHEX Mini
Mission Statement
Antenna Diameter Trade Space
Visibility Amplitudes of Secondary Targets
Thermal Noise Requirements (Mia)
BHEX Mini
D= 1m
D= 2m
D= 3m
Antenna Diameter Trade Space
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\downarrow
\downarrow
\uparrow
\uparrow
?
?
?
?
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{BHEX Mini Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{BHEX Mini Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow
\downarrow
\downarrow
\uparrow
\uparrow
?
?
?
?
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Solar Flux}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{BHEX Mini Area}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Absorptivity}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Eclipse Factor}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{Eclipse Factor}
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
\phi(t) = \frac{2\pi t}{T_{\text{orbit}}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{BHEX Mini Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
f_{\text{eclipse}}(t) = \begin{cases} 0 & \text{satellite in Earth's shadow} \\ 0.5 & \text{satellite in penumbra (partial shadow)} \\ 1 & \text{satellite in full sunlight} \end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
Q_{\text{Earth-IR}} = \varepsilon \cdot \sigma \cdot T_E^4 \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}}
\text{BHEX Mini Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
Q_{\text{Earth-IR}} = \varepsilon \cdot \sigma \cdot T_E^4 \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}}
Q_{\text{cooling}} = \varepsilon \cdot \sigma \cdot T_{\text{sat}}^4 \cdot A_{\text{total}}
\text{Thermal Load } P
\text{Coherence Time } t
\uparrow
\text{Thermal Load } P
\text{Coherence Time } t
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
Technology Readiness Level (TRL)
Areal Density
Material of Antenna
Type of Antenna
Surface Accuracy
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
Technology Readiness Level (TRL)
Areal Density
Material of Antenna
Type of Antenna
Surface Accuracy
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
M = \sigma \cdot (\pi D^2/4)
\uparrow