Direct Imaging Black Holes from LEO
Ref Bari | 06/29 Update
NIAC Phase I
Step 1: 100/300 ~ 33% Acceptance
Step 2: 12/100 ~ 12% Acceptance
Step 3: $175,000 for 9 Months
Our Competition
Fluidic Telescope (FLUTE): Enabling the Next Generation of Large Space Observatories
Our Competition
Bend-Forming of Large Electrostatically Actuated Space Structures
Our Competition
Hybrid Observatory for Earth-like Exoplanets (HOEE)
Our Competition
SCOPE: ScienceCraft for Outer Planet Exploration
Our Competition
Kilometer-Scale Space Structures from a Single Launch
Our Competition
Beholding Black Hole Power with the Accretion Explorer Interferometer
Our Competition
Solar System-Scale VLBI to Dramatically Improve Cosmological Distance Measurements
Our Competition
Swarming Proxima Centauri: Coherent Picospacecraft Swarms Over Interstellar Distances
Our Competition
LIFA: Lightweight Fiber-based Antenna for Small Sat-Compatible Radiometry
Our Competition
Water Telescope
50m Antenna
Self-Assembling Telescope
Large antennas
Starshade Telescope
Directly image exoplanets
Quantum-dot propelled sails
Explore exoplanets
Retractable structure to enable artificial gravity
Enable long-term human living in space
Create a swarm of X-Ray Interferometers
Enable studies of black hole jets and accretion disks
Lightsail swarms
Explore exoplanets
Solar system scale VLBI
Advance Precision-based Cosmology
Large RF Antennas
Enable salinity measurements
Our Competition
Water Telescope
50m Antenna
Self-Assembling Telescope
Large antennas
Starshade Telescope
Directly image exoplanets
Quantum-dot propelled sails
Explore exoplanets
AI-Assisted Modular VLBI Constellation in LEO
Enable time-resolved imaging of Sgr A* & M87 ("black hole video")
Create a swarm of X-Ray Interferometers
Enable studies of black hole jets and accretion disks
Lightsail swarms
Explore exoplanets
Solar system scale VLBI
Advance Precision-based Cosmology
Large RF Antennas
Enable salinity measurements
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
One-line mission statement
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
One-line engineering innovation
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
What revolutionary science could it enable?
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
Motivation for telescope design
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
Why this? Why now? How does it advance NASA's stated goals?
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
Primary Science Objectives
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
Why is this TRL 1/2? Why is it revolutionary, not evolutionary?
We propose the first hybrid observatory, combining a 100 m diameter starshade in space with a telescope on the ground. The Hybrid Observatory for Earth-like Exoplanets (HOEE) would convert the largest ground-based telescopes now under construction (Giant Magellan Telescope, Thirty Meter Telescope, and Extremely Large Telescope) into the most powerful planet finders yet designed. No other proposed equipment can match the angular resolution (image sharpness), sensitivity (ability to see faint objects in a given time), or contrast (ability to see faint planets near bright stars). The large telescope is needed because Earth-like planets are extremely faint. The starshade is needed to block the glare of the host stars; the sun is 10 billion times brighter than the Earth at visible wavelengths. A starshade in an astro-stationary orbit would match position and velocity with the moving telescope, and cast a dark shadow of the star, without blocking the light of its planets. Active propulsion would maintain alignment during the observation. Adaptive optics in the telescope would compensate for atmospheric distortion of the incoming images. The HOEE would address the highest priority recommendation of the Exoplanet Strategy report: observe reflected light from Earth-like planets with low resolution spectroscopy. This light is influenced by surface minerals, oceans, continents, weather, vegetation, and atmospheric constituents, temperature, and pressure. Observing many systems would help answer the question of why configurations like our own Solar System are rare; of the thousands of known exoplanet systems, none are quite like home, with inner rocky planets, a faint cloud of dust, an asteroid belt, and giant outer planets. Observing photosynthetic oxygen would answer the questions of whether life is rare or common, what it requires, and how long it takes to grow. But this starshade is not constructible with today’s designs. An ultra-lightweight redesign will be developed that can be built or assembled in space. Our objective is to cut the starshade mass by more than a factor of 10. There is no reason to require thousands of kg to support 400 kg of thin membranes. The HOEE depends on two major innovations: a ground-space hybrid observatory, and an extremely large telescope on the ground. The tall pole requiring design and demonstration is the mechanical concept of the starshade itself. It must satisfy conflicting requirements for size and mass, shape accuracy and stability, and rigidity during or after thruster firing. Low mass is essential for observing many different target stars. If it can be assembled or constructed after launch, it need not be built to survive launch. We believe all requirements can be met, given sufficient effort. The HOEE is the most powerful exoplanet observatory yet proposed.
Memorable, superlative one-liner
Optical Downlink
Problem: Limited Ground Coverage at LEO
Radical Solution: Uplink to BHEX at MEO
Atmospheric Decoherence
Problem: Earth’s atmosphere adds noise to radio signals downlinked to ground stations, thus decreasing SNR
Radical Solution: Delete the Earth’s Atmosphere
Expensive SWaP Cryocooler Required
Problem: We require an expensive, heavy Cryocooler to cool BHEX Mini’s primary receiver down to cryogenic sub-25K temperatures
Radical Solution: Implement Passive Cooling Mechanisms (i.e., JWST’s Sunshield)
(u,v) coverage limited to 86 GHz Regime
Problem: Since BHEX Mini will be observing at only 86 GHz, its (u,v) coverage is restricted to a limited domain of the interferometric plane.
Radical Solutions: (1) Employ a sandwich VLBI construction between BHEX + BHEX Mini or (2) Employ an intelligent swarm of VLBI SmallSats in LEO which can form many short and long baselines that provide dense and rapid (u,v) coverage
Event Horizon Telescope
(2019)
Event Horizon Telescope (EHT)
Event Horizon Telescope
(2019)
Event Horizon Telescope (EHT)
Event Horizon Telescope
(2019)
Event Horizon Telescope (EHT)
Black Holes: An Intro
(2031)
Black Hole Explorer Satellite (BHEX) Mission
Imaging a Black Hole
(The black hole explorer: Motivation and vision, Johnson et. al., 2024)
Spaceflight Heritage
EQUiSat
SBUDNIC
PVDX
Spaceflight Heritage
SBUDNIC
PVDX
EQUiSat
BHEX Mini
BHEX Mini
Imaging a Black Hole
Todd Ely
Joseph Lazio
Eric Burt
Ben Hudson
Luke Anderson
Rick Fleeter
Partner Satellite to BHEX
Stand-alone Satellite
Pathfinder Mission
Partner Satellite to BHEX
Stand-alone Satellite
Pathfinder Mission
Supplement (u,v) coverage at 86 GHz
Enable parameter estimation of Sgr A*/M87
Achieve Space-Space VLBI
Partner Satellite to BHEX
Stand-alone Satellite
Pathfinder Mission
Supplement (u,v) coverage at 86 GHz
Enable parameter estimation of Sgr A*/M87
Achieve Space-Space VLBI
Pathfinder Mission
Partner Satellite to BHEX
Stand-alone Satellite
Supplement (u,v) coverage at 86 GHz
Enable parameter estimation of Sgr A*/M87
Achieve Space-Space VLBI
Supplement (u,v) coverage at 86 GHz
Enable parameter estimation of Sgr A*/M87
Achieve Space-Space VLBI
Survey of >25 AGN+BH Targets @86 GHz
Enable Population Modeling of SMBHs
Enable real-time imaging of dynamical accretion disk around Sgr A*
Enable multi-messenger gravitational astronomy w/ LIGO + LISA
Partner Satellite to BHEX
Stand-alone Satellite
Pathfinder Mission
Supplement (u,v) coverage at 86 GHz
Enable parameter estimation of Sgr A*/M87
Achieve Space-Space VLBI
Supplement (u,v) coverage at 86 GHz
Enable parameter estimation of Sgr A*/M87
Achieve Space-Space VLBI
Survey of >25 AGN+BH Targets @86 GHz
Enable Population Modeling of SMBHs
Enable real-time imaging of dynamical accretion disk around Sgr A*
Enable multi-messenger gravitational astronomy w/ LIGO + LISA
Enable low-cost Space-Ground & Space-Space VLBI
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Prospects of Detecting a Jet in Sagittarius A* with VLBI (Chavez et. al., ApJ 2024)
Sub-milli arcsecond angular resolution:
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Sub-milli arcsecond angular resolution:
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Sub-milli arcsecond angular resolution:
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)
Sub-milli arcsecond angular resolution:
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)
Sub-milli arcsecond angular resolution:
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Multifrequency Black Hole Imaging for the Next-generation Event Horizon Telescope (Chael et. al., 2023, ApJ)
Sub-milli arcsecond angular resolution:
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Maximum data transmission rate (in bits per second); How fast can you send data from BHEX Mini to the earth?
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Power of Transmitted Signal: Strength of downlink signal in Watts (i.e., shouting louder to be heard further away!)
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Transmitter Gain: How well-focused your signal is when it leaves the satellite
(i.e., shouting into a megaphone instead of into the wind)
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)
Received Power: How strong is the signal once it hits the ground receiver? (after traveling through empty space)
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)
Distance: How much distance did the signal travel through free space? (LEO vs. MEO!)
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased radiation environment in LEO vs. MEO
Sub-milli arcsecond angular resolution
Dual short and long baseline lengths
Rapid coverage of (u,v) plane
Decreased signal loss from LEO
Decreased radiation environment in LEO vs. MEO
Decreased ISM scattering at LEO than MEO
Decreased ISM scattering at LEO than MEO
Orbit design for mitigating interstellar scattering effects in Earth-space VLBI observations of Sgr A* (Aditya Tamar, Ben Hudson, Daniel C.M. Palumbo, A&A, 2025)
Decreased ISM scattering at LEO than MEO
Intrinsic Gaussian Source
Decreased ISM scattering at LEO than MEO
ISM Scattering
Decreased ISM scattering at LEO than MEO
BHEX Mini Visibility Amplitude Advantage
Regardless of Source Flux Density!
Antenna
Receiver
Cryocooler
Cryocooler
HiPTC Heat Intercepted Pulse Tube Cooler
Solar Panels
Ultra-Stable Oscillator
Ultra-Stable Oscillator
Phase Error
Ultra-Stable Oscillator
Ultra-Stable Oscillator
Allan Deviation
ABRACON SMD OCXO
Digital Backend
Original Analog Radio Signal
Sample the Signal every Unit Interval
Nyquist-Shannon Sampling Theorem
Retain only the samples and record the sign of the voltage for each sample
Reconstruct the original signal
Quantization Efficiency: how much of the analog SNR is retained after digitization
SNR: Signal to Noise Ratio
Data Generation Rate: In Bits per Second
Cross-Correlation
🕒 Prospective Timeline
June
July
August
September
🕒 Prospective Timeline
June
July
August
September
🕒 Prospective Timeline
June
July
August
September
🕒 Prospective Timeline
June
July
Aug
September
🕒 Prospective Timeline
June
July
Aug
Sep
💰Funding Oppurtunities
June
$3,000
💰Funding Oppurtunities
July
$175,000
$3,000
$175,000
💰Funding Oppurtunities
Sep
$175,000
$3,000
$250,000
💰Funding Oppurtunities
Oct
$175,000
$3,000
$250,000
💰Funding Oppurtunities