BHEX Mini

Direct Imaging Black Holes from LEO

Ref Bari, Brown University

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🕰️ BHEX Mini
  5. 🕒 BHEX Mini Timeline
  6. 💰Funding Deadlines

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🕰️ BHEX Mini
  5. 🕒 BHEX Mini Timeline
  6. 💰Funding Deadlines

BHEX Mini

Ref Bari

Physics MS, Brown

Binary Black Holes

Physics MS, Brown

Brown Space Engineering

Spaceflight Heritage

EQUiSat

SBUDNIC

PVDX

Spaceflight Heritage

SBUDNIC

PVDX

  • 1U CubeSat (1.3 kg, 10x10x10 cm)
  • Payload: High-Power LED Array + LiFePO4 Batteries (<6 kg)
  • ADCS: Passive Magnetic Atitude Control System
  • Power Generated: 1.3W (Top+Bottom Panels) & .7W (Side)
  • Total Cost: $5000
    • All components built in-house at Brown Engineering Lab

EQUiSat

  • 3U CubeSat (3 kg, 30x10x10 cm)
  • Payload: Ham Radio Transceiver, 2 Cameras, Arduino Nano
  • ADCS: Spring-Loaded + Aerodynamic Drag Sail
  • Power Generated: 1.3W (Top+Bottom Panels) & .7W (Side)
  • Total Cost: $10,000
    • 3D-Printed Components at BDW
  • 3U CubeSat (~6 kg, 30x10x10 cm)
  • Payload: Perovskite Solar Panels + Robotic Arm + Digital Display
  • ADCS: Magnetorquers
  • Total Cost: ~$30,000
    • 3D-Printed Components at BDW
    • CUBECOM S-Band Transceiver ($10,000)
  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🕰️ BHEX Mini
  5. 🕒 BHEX Mini Timeline
  6. 💰Funding Deadlines

BHEX Mini

Black Hole (M87)

Event Horizon Telescope

(2019)

Event Horizon Telescope (EHT)

Event Horizon Telescope

(2019)

Event Horizon Telescope (EHT)

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🕰️ BHEX Mini
  5. 🕒 BHEX Mini Timeline
  6. 💰Funding Deadlines

BHEX Mini

Event Horizon Telescope

(2019)

Event Horizon Telescope (EHT)

Black Holes: An Intro

(2031)

Black Hole Explorer Satellite (BHEX) Mission

Imaging a Black Hole

(The black hole explorer: Motivation and vision, Johnson et. al., 2024)

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🕰️ BHEX Mini
  5. 🕒 BHEX Mini Timeline
  6. 💰Funding Deadlines

BHEX Mini

Spaceflight Heritage

EQUiSat

SBUDNIC

PVDX

Spaceflight Heritage

SBUDNIC

PVDX

EQUiSat

BHEX Mini

\text{MEO} (20000 \text{ km})
\text{LEO} (400 \text{ km})

BHEX Mini

Imaging a Black Hole

Todd Ely

Joseph Lazio

Eric Burt

Ben Hudson

Luke Anderson

Rick Fleeter

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

20,200\text{ km}
400\text{ km}

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

20,200\text{ km}
400\text{ km}

BHEX Mini

Pathfinder Mission

Partner Satellite to BHEX

Stand-alone Satellite

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Survey of >25 AGN+BH Targets @86 GHz

Enable Population Modeling of SMBHs

Enable real-time imaging of dynamical accretion disk around Sgr A*

Enable multi-messenger gravitational astronomy w/ LIGO + LISA

BHEX Mini

BHEX Mini

OJ 287

OJ 287

OJ 287

BHEX Mini

BHEX Mini

BHEX Mini

BHEX Mini

BHEX Mini

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Survey of >25 AGN+BH Targets @86 GHz

Enable Population Modeling of SMBHs

Enable real-time imaging of dynamical accretion disk around Sgr A*

Enable multi-messenger gravitational astronomy w/ LIGO + LISA

Enable low-cost Space-Ground & Space-Space VLBI

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

BHEX Mini

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

Prospects of Detecting a Jet in Sagittarius A* with VLBI (Chavez et. al., ApJ 2024)

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
20,000\text{ km}
12000\text{ km}
400\text{ km}

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
20,000\text{ km}
12000\text{ km}
400\text{ km}

Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
400\text{ km}

Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

Multifrequency Black Hole Imaging for the Next-generation Event Horizon Telescope (Chael et. al., 2023, ApJ)

400\text{ km}

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
  • What is the integration time for BHEX Mini on the (u,v) plane?
  • Could BHEX Mini possibly enable direct imaging of dynamic accretion disk around Sgr A*? (i.e., creating a movie of a black hole!)

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Maximum data transmission rate (in bits per second); How fast can you send data from BHEX Mini to the earth?

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Power of Transmitted Signal: Strength of downlink signal in Watts (i.e., shouting louder to be heard further away!)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Transmitter Gain: How well-focused your signal is when it leaves the satellite

(i.e., shouting into a megaphone instead of into the wind)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Received Power: How strong is the signal once it hits the ground receiver? (after traveling through empty space)

P_r = P_tG_tG_r \left( \frac{\lambda}{4\pi R}\right)^2 \cdot \eta

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Distance: How much distance did the signal travel through free space? (LEO vs. MEO!)

P_r = P_tG_tG_r \left( \frac{\lambda}{4\pi R}\right)^2 \cdot \eta

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)
  • Since BHEX Mini's laser downlink would suffer less signal loss from LEO than BHEX at MEO, can we transmit more data?
  • Can this be leveraged to use 2-bit quantization instead of 1-bit quantization?

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

Decreased ISM scattering at LEO than MEO

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)
P_r = P_tG_tG_r \left( \frac{\lambda}{4\pi R}\right)^2 \cdot \eta

BHEX Mini

Decreased ISM scattering at LEO than MEO

Orbit design for mitigating interstellar scattering effects in Earth-space VLBI observations of Sgr A* (Aditya Tamar, Ben Hudson, Daniel C.M. Palumbo, A&A, 2025)

BHEX Mini

Decreased ISM scattering at LEO than MEO

V_{obs}(b) = S\cdot \exp\left(-\frac{\pi^2 b^2\theta^2}{4\ln 2}\right)\exp \left(-\frac{1}{2} C_\phi^2 b^\alpha r_F^{2-\alpha}\right)

Intrinsic Gaussian Source

b=\frac{\lambda}{D}\to \text{BHEX Mini: } 0.1G\lambda b_{sg}<3.5G\lambda
b=\frac{\lambda}{D}\to \text{BHEX:}\geq 20G\lambda

BHEX Mini

Decreased ISM scattering at LEO than MEO

V_{obs}(b) = S\cdot \exp\left(-\frac{\pi^2 b^2\theta^2}{4\ln 2}\right)\exp \left(-\frac{1}{2} C_\phi^2 b^\alpha r_F^{2-\alpha}\right)

ISM Scattering

C_{\phi}\propto \lambda^2 (\lambda_{\text{BHEX Mini}}=3.5 mm)
  • At MEO, BHEX is 20x the orbital altitude of BHEX Mini
  • BHEX observes at a f=320 GHz, 4x higher than BHEX Mini

BHEX Mini

Decreased ISM scattering at LEO than MEO

V_{ratio}(b) = \frac{e^{-b_{\text{BHEX-Mini}}^2} e^{-\lambda_{\text{BHEX-Mini}}^2 b^\alpha}}{e^{-b_{\text{BHEX}}^2} e^{-\lambda_{\text{BHEX}}^2 b^\alpha}}
\lambda_{\text{BHEX Mini}}=3.7\lambda_{\text{BHEX}}, b_{\text{BHEX Mini}} = \frac{1}{5}b_{\text{BHEX}}
\lambda_{\text{BHEX}}=1.33mm, b_{\text{BHEX Mini}} \sim 20G\lambda
V_{\text{BHEX-Mini}}\sim 10V_{\text{BHEX}}

BHEX Mini Visibility Amplitude Advantage

Regardless of Source Flux Density!

V_{obs}(b) = S\cdot \exp\left(-\frac{\pi^2 b^2\theta^2}{4\ln 2}\right)\exp \left(-\frac{1}{2} C_\phi^2 b^\alpha r_F^{2-\alpha}\right)

BHEX Mini

BHEX Mini

BHEX Mini

Antenna

BHEX Mini

Receiver

BHEX Mini

Cryocooler

BHEX Mini

Cryocooler

HiPTC Heat Intercepted Pulse Tube Cooler

  • Cost: $10 Million
  • Mass: 22kg
  • Cooling power
    • 400 mW at 15K
    • 5.2 W at 100K
  • Electric power: 300 W

BHEX Mini

Solar Panels

BHEX Mini

Ultra-Stable Oscillator

BHEX Mini

Ultra-Stable Oscillator

\Delta \phi = 2\pi \cdot f \cdot \sigma_t
\sigma_t = \sigma_f \cdot \Delta t

Phase Error

BHEX Mini

Ultra-Stable Oscillator

\sigma_f = 5\cdot 10^{-11}, f_{obs}=86 \text{ GHz}
\Delta t = 1s:
\sigma_t = 5\cdot 10^{-11} \cdot 1s = 5\cdot 10^{-11} s
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 5\cdot 10^{-11} s=27.01 \text{ rad}
\Delta t = 10s:
\sigma_t = 5\cdot 10^{-11} \cdot 10s = 50\cdot 10^{-11} s
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 50\cdot 10^{-11} s=270.01 \text{ rad}
\Delta \phi<1 \text{ rad for Phase Coherence}

BHEX Mini

Ultra-Stable Oscillator

Allan Deviation

f=86 \text{ GHz}, t=10s, \sigma_y = 5\cdot 10^{-11}
L = 1-\exp\left[-2\pi^{2}(86\cdot 10^9)^{2}(10)^{2}(5\cdot 10^{-11})^{2}\right]

ABRACON SMD OCXO

L = 1-\exp\left(-2\pi^{2}f^{2}t^{2}\sigma_y^{2}\right)
L\sim 1\%<10\% \text{ required for Phase Coherence}

BHEX Mini

Digital Backend

BHEX Mini

Original Analog Radio Signal

BHEX Mini

Sample the Signal every Unit Interval

f_s\geq 2f

Nyquist-Shannon Sampling Theorem

BHEX Mini

Retain only the samples and record the sign of the voltage for each sample

BHEX Mini

Reconstruct the original signal

BHEX Mini

\eta_{Q}(N_{bit})\sim 1-\frac{\pi}{2}\cdot 2^{-2N_{bit}}
SNR = \eta_{corr}\times \frac{T_{source}}{T_{system}}\times \sqrt{\Delta \nu \cdot \tau}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\eta = \sqrt{\eta_1\eta_2}

BHEX Mini

\eta_{Q}(N_{bit})\sim 1-\frac{\pi}{2}\cdot 2^{-2N_{bit}}
SNR = \eta_{corr}\times \frac{T_{source}}{T_{system}}\times \sqrt{\Delta \nu \cdot \tau}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\eta = \sqrt{\eta_1\eta_2}

Quantization Efficiency: how much of the analog SNR is retained after digitization

\eta_{Q}(1)\sim 63\%
\eta_{Q}(2)\sim 88\%

BHEX Mini

\eta_{Q}(N_{bit})\sim 1-\frac{\pi}{2}\cdot 2^{-2N_{bit}}
SNR = \eta_{corr}\times \frac{T_{source}}{T_{system}}\times \sqrt{\Delta \nu \cdot \tau}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\eta = \sqrt{\eta_1\eta_2}

SNR: Signal to Noise Ratio

SNR = 0.88\times \frac{1K}{100K}\times \sqrt{32 \text{GHz} \cdot 10\text{s}}=4.98

BHEX Mini

\eta_{Q}(N_{bit})\sim 1-\frac{\pi}{2}\cdot 2^{-2N_{bit}}
SNR = \eta_{corr}\times \frac{T_{source}}{T_{system}}\times \sqrt{\Delta \nu \cdot \tau}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\eta = \sqrt{\eta_1\eta_2}

Data Generation Rate: In Bits per Second

\text{Rate} = (2+2)\times 32 \text{ GHz} \times 2 \cdot 2=512 \text{Gb/s}

BHEX Mini

\eta_{Q}(N_{bit})\sim 1-\frac{\pi}{2}\cdot 2^{-2N_{bit}}
SNR = \eta_{corr}\times \frac{T_{source}}{T_{system}}\times \sqrt{\Delta \nu \cdot \tau}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\eta = \sqrt{\eta_1\eta_2}

Cross-Correlation

🕒 Prospective Timeline

June

July

August

September

🕒 Prospective Timeline

June

July

August

September

  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas

🕒 Prospective Timeline

June

July

August

September

  • NSF Foundational Research in Robotics Grant (FRR)
  • Fall Walls Foundation Selections
  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas
  • Cryocooler Focus
    • SunPower
    • Blue Marble

🕒 Prospective Timeline

June

July

Aug

September

  • NSF Foundational Research in Robotics Grant (FRR)
  • Fall Walls Foundation Selections
  • Brown University Co-Lab 
  • NASA NIAC Phase I Round I Step B Selections Announced
  • Solar Panel Focus
    • DCubed Inc.
    • DHV Tech
  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas
  • Cryocooler Focus
    • SunPower
    • Blue Marble

🕒 Prospective Timeline

June

July

Aug

Sep

  • Cryocooler Focus
    • SunPower
    • Blue Marble
  • NSF Foundational Research in Robotics Grant (FRR)
  • Fall Walls Foundation Selections
  • Brown University Co-Lab 
  • NASA NIAC Phase I Round I Step B Selections Announced
  • Solar Panel Focus
    • DCubed Inc.
    • DHV Tech
  • NSF Advanced Technologies and Instrumentation for the Astronomical Sciences (ATI) 
  • Data Downlink Focus
    • MIT Lincoln Labs
    • ALICE/CLICK Teams
  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas

💰Funding Oppurtunities

June

$3,000

💰Funding Oppurtunities

July

$175,000

$3,000

$175,000

💰Funding Oppurtunities

Sep

$175,000

$3,000

$250,000

💰Funding Oppurtunities

Oct

$175,000

$3,000

$250,000

💰Funding Oppurtunities