BHEX Mini*

Time-Resolving Black Holes from LEO

Ref Bari, Brown University

  1. 🎯 Introduction
  2. ✨ Black Holes: An Intro
  3. 🔭 Event Horizon Telescope
  4. 📻 BHEX (Black Hole Explorer Satellite)
  5. 🛰️ BHEX Mini Primary Science Objectives
  6. 📊 BHEX Mini Mission Parameters
  7. 📡 BHEX Mini Operational Profiles
  8. 🚀 BHEX Mini Orbital Configuration
  9. 🕒 BHEX Mini Timeline
  10. 💰Funding Deadlines

BHEX Mini

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Profiles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

Ref Bari

Physics MS, Brown

Binary Black Holes

Physics MS, Brown

Brown Space Engineering

Spaceflight Heritage

EQUiSat

SBUDNIC

PVDX

Spaceflight Heritage

SBUDNIC

PVDX

  • 1U CubeSat (1.3 kg, 10x10x10 cm)
  • Payload: High-Power LED Array + LiFePO4 Batteries (<6 kg)
  • ADCS: Passive Magnetic Atitude Control System
  • Power Generated: 1.3W (Top+Bottom Panels) & .7W (Side)
  • Total Cost: $5000
    • All components built in-house at Brown Engineering Lab

EQUiSat

  • 3U CubeSat (3 kg, 30x10x10 cm)
  • Payload: Ham Radio Transceiver, 2 Cameras, Arduino Nano
  • ADCS: Spring-Loaded + Aerodynamic Drag Sail
  • Power Generated: 1.3W (Top+Bottom Panels) & .7W (Side)
  • Total Cost: $10,000
    • 3D-Printed Components at BDW
  • 3U CubeSat (~6 kg, 30x10x10 cm)
  • Payload: Perovskite Solar Panels + Robotic Arm + Digital Display
  • ADCS: Magnetorquers
  • Total Cost: ~$30,000
    • 3D-Printed Components at BDW
    • CUBECOM S-Band Transceiver ($10,000)

Spaceflight Heritage

SBUDNIC

PVDX

EQUiSat

BHEX Mini

BHEX Mini

\textbf{Primary Science Objectives: }\text{Time-Resolve Sgr A* Accretion Disk}
\text{Conduct 86 GHz targeted survey from LEO}
\text{Enable time-resolved multi-messenger astronomy}
10 \text{ GHz}
47 \text{ GHz}
220 \text{ GHz}
1100 \text{ GHz}

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Profiles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

M87

Sgr A*

Black Hole (M87)

Event Horizon Telescope

(2019)

Event Horizon Telescope (EHT)

Event Horizon Telescope

(2019)

Event Horizon Telescope (EHT)

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Profiles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Profiles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

Spaceflight Heritage

EQUiSat

SBUDNIC

PVDX

Spaceflight Heritage

SBUDNIC

PVDX

EQUiSat

BHEX Mini

\text{MEO} (20000 \text{ km})
\text{LEO} (400 \text{ km})

BHEX Mini

Imaging a Black Hole

"Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope​" Palumbo et. al. ApJ 2019

BHEX Mini

BHEX Mini

BHEX Mini

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Profiles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

BHEX Mini SWaPC

Size

Weight

Power

Power

Cost

\sim 2.5m
\sim 25-50kg
22 kg
300W
400mW @15^{\circ}K
\$10 \text{mln}
754 mm \times \\ 146 mm \times \\ 300 mm
\$2-5 \text{Mln}
\$4-11 \text{Mln}
10-20W
\text{(deployment)}
5-7 kg
\sim 10W
\sim \$ 1 \text{mln}
\sim0.02m^3
\sim 1 kg
\sim 3W
\sim \$1\text{mln}^*
60 mm\times \\60mm \times \\32 mm
1U (100 mm\times \\100 mm \times \\100 mm)
1.2 kg
1.2 kg
100W\\\text{generated}
\sim \$100\text{k}
3U (300 mm\times \\300 mm \times \\300 mm)
100W
3 kg
\sim \$1\text{mln}^*
\sim 4W
\sim 1 kg^*
12 mm \times \\12 mm
\sim \$1\text{mln}^*
\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A

Mission Parameters

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau_{\text{Coherence, BHEX-Mini}}\lessapprox 2 \text{ min} \sim 120 s
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

SEFD

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 100K

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 100K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 100K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\text{SEFD}_{\text{BHEX}}\sim 18,000 \text{ Jy}
\text{SEFD}_{\text{ALMA}}\sim 74 \text{ Jy}
\text{SEFD}_{\text{SMA}}\sim 6700 \text{ Jy}
\text{SEFD}_{\text{SMT}}\sim 10,500 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{BHEX Mini - BHEX}}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{BHEX}} \mathrm{SEFD}_{\text{BHEX-Mini}}}{2 \Delta \nu \Delta t}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{BHEX Mini - BHEX}}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{BHEX}} \mathrm{SEFD}_{\text{BHEX-Mini}}}{2 \Delta \nu \Delta t}}
\sigma_{\text{BHEX Mini - EHT}}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{EHT}} \mathrm{SEFD}_{\text{BHEX-Mini}}}{2 \Delta \nu \Delta t}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{BHEX Mini - BHEX}}=\frac{1}{0.75} \sqrt{\frac{(18,000 \text{ Jy})(32,000 \text{Jy})}{2 (32 \text{GHz}) (100s)}}
\sigma_{\text{BHEX Mini - EHT}}=\frac{1}{0.75} \sqrt{\frac{(6000 \text{ Jy})(32,000 \text{Jy})}{2 (32 \text{GHz}) (10s)}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}
\Delta \phi = 2\pi \cdot f \cdot \sigma_t
\sigma_t = \sigma_f \cdot \Delta t
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 2\pi \cdot f \cdot \sigma_t
\sigma_t = \sigma_f \cdot \Delta t
\sigma_t = 8\cdot 10^{-15} (\text{LISA USO})
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 8\cdot 10^{-15}s\sim 10^{-3} \text{ rad}<1 \text{ rad}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\Delta t = \text{10 s})
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\Delta t = \text{10 s})
L = 1-\exp\left(-2\pi^{2}f^{2}t^{2}\sigma_y^{2}\right)
L = 1-\exp\left[-2\pi^{2}(86\cdot 10^9)^{2}(10)^{2}(5\cdot 10^{-11})^{2}\right]\sim 1\%
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\text{Rate}\times T_{orb} \times \text{Duty Cycle} = \text{Total Data (GB)}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{S-S} \sim \frac{\lambda}{D}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{S-S} \sim \frac{\lambda}{D}=\frac{3.5mm}{20,000 km}
\theta_{S-G} \sim \frac{\lambda}{D}=\frac{3.5mm}{400 km}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\omega=\frac{2\pi}{P} = \frac{2\pi}{1.5 \text{ hr}\cdot \frac{3600 s}{1 \text{hr}}}=1.16\times 10^{-3} rad/s
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
0.11 G \lambda < b_{s g}<3.5 G \lambda
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\theta_{FOV} = 180 \mu as
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}=\frac{1}{(1.16\times 10^{-3} \frac{rad}{s}) (3.5 G\lambda)(1.6\cdot 10^{-7}s)}
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau_{\text{BHEX-Mini}}\lessapprox \frac{15G\lambda}{3.5 G\lambda}\lessapprox 4.2 \text{ min}, \tau_{\text{Coherence, BHEX-Mini}}\sim 275 s
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{BHEX Mini -BHEX}}\sim 35 \mu as
\theta_{\text{BHEX Mini - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
66.93s<\tau_{GS}<275s
\text{SEFD}_{\text{BHEX-Mini}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{BHEX Mini - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{BHEX Mini - EHT}}\sim 40 \text{ mJy}

NASA Pioneers

Aspera

Pandora

StarBurst

PUEO

(Galaxy Evolution via UV)

(Exoplanet Explorer)

(Neutron Stars via Gamma Rays)

(Particle Physics via High-Energy Neutrinos)

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Roles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

20,200\text{ km}
400\text{ km}

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

20,200\text{ km}
400\text{ km}

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

20,200\text{ km}
400\text{ km}

BHEX Mini

Pathfinder Mission

Partner Satellite to BHEX

Stand-alone Satellite

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Survey of >25 AGN+BH Targets @86 GHz

Enable Population Modeling of SMBHs

Enable real-time imaging of dynamical accretion disk around Sgr A*

Enable multi-messenger gravitational astronomy w/ LIGO + LISA

OJ 287

OJ 287

OJ 287

BHEX Mini

BHEX Mini

Partner Satellite to BHEX

Stand-alone Satellite

Pathfinder Mission

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

Survey of >25 AGN+BH Targets @86 GHz

Enable Population Modeling of SMBHs

Enable real-time imaging of dynamical accretion disk around Sgr A*

Enable multi-messenger gravitational astronomy w/ LIGO + LISA

Enable low-cost Space-Ground & Space-Space VLBI

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Roles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

BHEX Mini

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

Prospects of Detecting a Jet in Sagittarius A* with VLBI (Chavez et. al., ApJ 2024)

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

32\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

32\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
20,000\text{ km}
12000\text{ km}
400\text{ km}

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

32\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
20,000\text{ km}
12000\text{ km}
400\text{ km}

Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

32\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
400\text{ km}

Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)

20000\text{ km}
12000\text{ km}
\text{BHEX}
\text{BHEX Mini}

"Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope​" Palumbo et. al. ApJ 2019

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

32\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
  • What kind of targets can we observe with this angular resolution?
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

Multifrequency Black Hole Imaging for the Next-generation Event Horizon Telescope (Chael et. al., 2023, ApJ)

400\text{ km}

BHEX Mini

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
  • What is the integration time for BHEX Mini on the (u,v) plane?
  • Could BHEX Mini possibly enable direct imaging of dynamic accretion disk around Sgr A*? (i.e., creating a movie of a black hole!)

BHEX Mini

\text{To time resolve Sgr A*, we must have} \\f_{coverage}>50\% \text{ in } t < T_{ISCO} \sim 30 \text{ min}

BHEX Mini

\text{To time resolve Sgr A*, we must have} \\f_{coverage}>50\% \text{ in } t < T_{ISCO} \sim 30 \text{ min}

BHEX Mini

\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\sigma=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_1 \mathrm{SEFD}_2}{2 \Delta \nu \tau}}
\text{Coherence Time}
\text{Thermal Noise}

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Maximum data transmission rate (in bits per second); How fast can you send data from BHEX Mini to the earth?

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Power of Transmitted Signal: Strength of downlink signal in Watts (i.e., shouting louder to be heard further away!)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Transmitter Gain: How well-focused your signal is when it leaves the satellite

(i.e., shouting into a megaphone instead of into the wind)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Received Power: How strong is the signal once it hits the ground receiver? (after traveling through empty space)

P_r = P_tG_tG_r \left( \frac{\lambda}{4\pi R}\right)^2 \cdot \eta

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Distance: How much distance did the signal travel through free space? (LEO vs. MEO!)

P_r = P_tG_tG_r \left( \frac{\lambda}{4\pi R}\right)^2 \cdot \eta

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Receiver Gain: How effectively the ground station collects and concentrates the incoming signal (i.e., ALMA's big dish listening to our incoming signal)

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)
  • Since BHEX Mini's laser downlink would suffer less signal loss from LEO than BHEX at MEO, can we transmit more data?
  • Can this be leveraged to use 2-bit quantization instead of 1-bit quantization?

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

30 min

60 min

90 min

24 hr

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

BHEX Mini

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

Sub-milli arcsecond angular resolution

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}

Decreased ISM scattering at LEO than MEO

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)
P_r = P_tG_tG_r \left( \frac{\lambda}{4\pi R}\right)^2 \cdot \eta

BHEX Mini

Decreased ISM scattering at LEO than MEO

Orbit design for mitigating interstellar scattering effects in Earth-space VLBI observations of Sgr A* (Aditya Tamar, Ben Hudson, Daniel C.M. Palumbo, A&A, 2025)

BHEX Mini

Decreased ISM scattering at LEO than MEO

V_{obs}(b) = S\cdot \exp\left(-\frac{\pi^2 b^2\theta^2}{4\ln 2}\right)\exp \left(-\frac{1}{2} C_\phi^2 b^\alpha r_F^{2-\alpha}\right)

Intrinsic Gaussian Source

b=\frac{\lambda}{D}\to \text{BHEX Mini: } 0.1G\lambda b_{sg}<3.5G\lambda
b=\frac{\lambda}{D}\to \text{BHEX:}\geq 20G\lambda

BHEX Mini

Decreased ISM scattering at LEO than MEO

V_{obs}(b) = S\cdot \exp\left(-\frac{\pi^2 b^2\theta^2}{4\ln 2}\right)\exp \left(-\frac{1}{2} C_\phi^2 b^\alpha r_F^{2-\alpha}\right)

ISM Scattering

C_{\phi}\propto \lambda^2 (\lambda_{\text{BHEX Mini}}=3.5 mm)
  • At MEO, BHEX is 20x the orbital altitude of BHEX Mini
  • BHEX observes at a f=320 GHz, 4x higher than BHEX Mini

BHEX Mini

Decreased ISM scattering at LEO than MEO

V_{ratio}(b) = \frac{e^{-b_{\text{BHEX-Mini}}^2} e^{-\lambda_{\text{BHEX-Mini}}^2 b^\alpha}}{e^{-b_{\text{BHEX}}^2} e^{-\lambda_{\text{BHEX}}^2 b^\alpha}}
\lambda_{\text{BHEX Mini}}=3.7\lambda_{\text{BHEX}}, b_{\text{BHEX Mini}} = \frac{1}{5}b_{\text{BHEX}}
\lambda_{\text{BHEX}}=1.33mm, b_{\text{BHEX Mini}} \sim 20G\lambda
V_{\text{BHEX-Mini}}\sim 10V_{\text{BHEX}}

BHEX Mini Visibility Amplitude Advantage

Regardless of Source Flux Density!

V_{obs}(b) = S\cdot \exp\left(-\frac{\pi^2 b^2\theta^2}{4\ln 2}\right)\exp \left(-\frac{1}{2} C_\phi^2 b^\alpha r_F^{2-\alpha}\right)

BHEX Mini

BHEX Mini

Size

Weight

Power

Power

Cost

\sim 2.5m
\sim 25-50kg
22 kg
300W
400mW @15^{\circ}K
\$10 \text{mln}
754 mm \times \\ 146 mm \times \\ 300 mm
\$2-5 \text{Mln}
\$4-11 \text{Mln}
10-20W
\text{(deployment)}
5-7 kg
\sim 10W
\sim \$ 1 \text{mln}
\sim0.02m^3
\sim 1 kg
\sim 3W
\sim \$1\text{mln}^*
60 mm\times \\60mm \times \\32 mm
1U (100 mm\times \\100 mm \times \\100 mm)
1.2 kg
1.2 kg
100W
\sim \$100\text{k}
3U (300 mm\times \\300 mm \times \\300 mm)
100W
3 kg
\sim \$1\text{mln}^*
\sim 4W
\sim 4W
12 mm \times \\12 mm
\sim \$1\text{mln}^*

BHEX Mini SWaPC

Size

Weight

Power

Power

Cost

\sim 2.5m
\sim 25-50kg
22 kg
300W
400mW @15^{\circ}K
\$10 \text{mln}
754 mm \times \\ 146 mm \times \\ 300 mm
\$2-5 \text{Mln}
\$4-11 \text{Mln}
10-20W
\text{(deployment)}
5-7 kg
\sim 10W
\sim \$ 1 \text{mln}
\sim0.02m^3
\sim 1 kg
\sim 3W
\sim \$1\text{mln}^*
60 mm\times \\60mm \times \\32 mm
1U (100 mm\times \\100 mm \times \\100 mm)
1.2 kg
1.2 kg
100W\\\text{generated}
\sim \$100\text{k}
3U (300 mm\times \\300 mm \times \\300 mm)
100W
3 kg
\sim \$1\text{mln}^*
\sim 4W
\sim 1 kg^*
12 mm \times \\12 mm
\sim \$1\text{mln}^*
\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A

BHEX Mini

BHEX Mini

Antenna

BHEX Mini

Receiver

BHEX Mini

Cryocooler

BHEX Mini

Cryocooler

HiPTC Heat Intercepted Pulse Tube Cooler

  • Cost: $10 Million
  • Mass: 22kg
  • Cooling power
    • 400 mW at 15K
    • 5.2 W at 100K
  • Electric power: 300 W

BHEX Mini

Solar Panels

BHEX Mini

Ultra-Stable Oscillator

BHEX Mini

Ultra-Stable Oscillator

\Delta \phi = 2\pi \cdot f \cdot \sigma_t
\sigma_t = \sigma_f \cdot \Delta t

Phase Error

BHEX Mini

Ultra-Stable Oscillator

\sigma_f = 5\cdot 10^{-11}, f_{obs}=86 \text{ GHz}
\Delta t = 1s:
\sigma_t = 5\cdot 10^{-11} \cdot 1s = 5\cdot 10^{-11} s
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 5\cdot 10^{-11} s=27.01 \text{ rad}
\Delta t = 10s:
\sigma_t = 5\cdot 10^{-11} \cdot 10s = 50\cdot 10^{-11} s
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 50\cdot 10^{-11} s=270.01 \text{ rad}
\Delta \phi<1 \text{ rad for Phase Coherence}

BHEX Mini

Ultra-Stable Oscillator

Allan Deviation

f=86 \text{ GHz}, t=10s, \sigma_y = 5\cdot 10^{-11}
L = 1-\exp\left[-2\pi^{2}(86\cdot 10^9)^{2}(10)^{2}(5\cdot 10^{-11})^{2}\right]

ABRACON SMD OCXO

L = 1-\exp\left(-2\pi^{2}f^{2}t^{2}\sigma_y^{2}\right)
L\sim 1\%<10\% \text{ required for Phase Coherence}

BHEX Mini

Digital Backend

BHEX Mini

Original Analog Radio Signal

BHEX Mini

Sample the Signal every Unit Interval

f_s\geq 2f

Nyquist-Shannon Sampling Theorem

BHEX Mini

Retain only the samples and record the sign of the voltage for each sample

BHEX Mini

Reconstruct the original signal

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Roles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

BHEX Mini

  • Email BHEX Team

Jan 2025

BHEX Mini

  • Email BHEX Team

Jan 2025

BHEX Mini

  • Email BHEX Team

Jan 2025

BHEX Mini

  • Email BHEX Team

Jan 2025

Feb 2025

  • Literature Review

BHEX Mini

  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review
  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant

Rick Fleeter

  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)

BHEX Mini

Ben Hudson

Luke Anderson

  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant
  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

May 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)
  • Trained ~6 undergraduates to run simulations on BHEX Mini
  • Jeffrey Olson (Cryocooler Engineer, Lockheed Martin

BHEX Mini

Jeffrey Olson

  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant

Jun 2025

Jul 2025

  • Completed Antenna SWaPC Requirements
  • Obtained Preliminary Grant Funding from Nelson Center
  • Began correspondence with NASA JPL on Ultrastable Oscillators
  • Constrained BHEX Mini SWaPC Requirements
  • Approved by Brown Division of Research as PI for BHEX Mini
  • Submitted to NASA NIAC Phase I Solicitation
  • Accepted to SmallSat Europe 2026

Todd Ely

Joseph Lazio

Eric Burt

  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

May 2025

Jun 2025

Jul 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)
  • Trained ~6 undergraduates to run simulations on BHEX Mini
  • Jeffrey Olson (Cryocooler Engineer, Lockheed Martin)
  • Rejected from RISG
  • Completed Antenna SWaPC Requirements
  • Obtained Preliminary Grant Funding from Nelson Center
  • Began correspondence with NASA JPL on Space-Space VLBI
  • Constrained BHEX Mini SWaPC Requirements
  • Approved by Brown Division of Research as PI for BHEX Mini
  • Submitted to NASA NIAC Phase I Solicitation
  • Accepted to SmallSat Europe 2026
  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

May 2025

Jun 2025

Jul 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)
  • Trained ~6 undergraduates to run simulations on BHEX Mini
  • Jeffrey Olson (Cryocooler Engineer, Lockheed Martin)
  • Rejected from RISG
  • Completed Antenna SWaPC Requirements
  • Obtained Preliminary Grant Funding from Nelson Center
  • Began correspondence with NASA JPL on Space-Space VLBI
  • Rejected from International Astronautical Congress
  • Constrained BHEX Mini SWaPC Requirements
  • Approved by Brown Division of Research as PI for BHEX Mini
  • Submitted to NASA NIAC Phase I Solicitation
  • Accepted to SmallSat Europe 2026
  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant
  • Meeting with MIT Lincoln Labs (8/15)
  • Colloquium at Princeton IAS (9/04)
  • Michael Johnson Colloquium at Brown (PI, BHEX) (9/22) 
  • Assemble Science/Engineering Leadership Team for NASA / CSA

Aug 2025

Science

Leadership

Engineering

Leadership

BHEX Mini

Team

Advisors

Inner

circle

BHEX Mini

Science

Leadership

Inner

circle

BHEX Mini

Engineering

Leadership

Advisors

BHEX Mini

Team

Inner

circle

BHEX Mini

Science

Leadership

Engineering

Leadership

Advisors

BHEX Mini

Team

Engineering

Leadership

Inner

circle

BHEX Mini

Science

Leadership

Advisors

BHEX Mini

Team

Inner

circle

BHEX Mini

Science

Leadership

Engineering

Leadership

Advisors

BHEX Mini

Team

Advisors

Inner

circle

BHEX Mini

Science

Leadership

Engineering

Leadership

BHEX Mini

Team

Inner

circle

BHEX Mini

Science

Leadership

Engineering

Leadership

Advisors

BHEX Mini

Team

Team

BHEX Mini

Inner

circle

Science

Leadership

Engineering

Leadership

Advisors

Inner

circle

BHEX Mini

Science

Leadership

Engineering

Leadership

Advisors

BHEX Mini

Team

🕒 Prospective Timeline

June

July

August

September

🕒 Prospective Timeline

June

July

August

September

  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas

🕒 Prospective Timeline

June

July

August

September

  • NSF Foundational Research in Robotics Grant (FRR)
  • Fall Walls Foundation Selections
  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas
  • Cryocooler Focus
    • SunPower
    • Blue Marble

🕒 Prospective Timeline

June

July

Aug

September

  • NSF Foundational Research in Robotics Grant (FRR)
  • Fall Walls Foundation Selections
  • Brown University Co-Lab 
  • NASA NIAC Phase I Round I Step B Selections Announced
  • Solar Panel Focus
    • DCubed Inc.
    • DHV Tech
  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas
  • Cryocooler Focus
    • SunPower
    • Blue Marble

🕒 Prospective Timeline

June

July

Aug

Sep

  • Cryocooler Focus
    • SunPower
    • Blue Marble
  • NSF Foundational Research in Robotics Grant (FRR)
  • Fall Walls Foundation Selections
  • Brown University Co-Lab 
  • NASA NIAC Phase I Round I Step B Selections Announced
  • Solar Panel Focus
    • DCubed Inc.
    • DHV Tech
  • NSF Advanced Technologies and Instrumentation for the Astronomical Sciences (ATI) 
  • Data Downlink Focus
    • MIT Lincoln Labs
    • ALICE/CLICK Teams
  • NASA NIAC 2025 Phase I Step I
  • SpaceCom Conference 2026
  • Brown Nelson + Hazeltine Grants
  • Antenna Focus
    • Nacer Chahat
    • Emmanuel Decrossas

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Roles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

💰Funding Deadlines

June

💰Funding Deadlines

$5,000

July

💰Funding Deadlines

$5,000

$175,000

Aug

💰Funding Deadlines

$5,000

$175,000

>$4M

Sep

💰Funding Deadlines

$5,000

$175,000

>$4M

Oct

💰Funding Deadlines

$5,000

$175,000

>$4M

>$400,000

BHEX Mini

  1. 🎯 Introduction
  2. 🔭 Event Horizon Telescope
  3. 📻 BHEX (Black Hole Explorer Satellite)
  4. 🛰️ BHEX Mini Primary Science Objectives
  5. 📊 BHEX Mini Mission Parameters
  6. 📡 BHEX Mini Operational Roles
  7. 🚀 BHEX Mini Orbital Configuration
  8. 🕒 BHEX Mini Timeline
  9. 💰Funding Deadlines
  10. 🤝 The Request

BHEX Mini | MIT Lincoln Lab Meeting

By Ref Bari

BHEX Mini | MIT Lincoln Lab Meeting

  • 96