Binary Black Holes

A GENERIC Approach

Ref Bari

Advisor: Prof. Brendan Keith

Binary Black Holes

\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)
\textbf{>} \text{Preliminary Dissipation Model}
\textbf{>} \text{GENERIC Form of } M\nabla S

Binary Black Holes

\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)
\textbf{>} \text{Preliminary Dissipation Model}
\textbf{>} \text{GENERIC Form of } M\nabla S

Binary Black Holes

\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)
\textbf{>} \text{Preliminary Dissipation Model}
\textbf{>} \text{GENERIC Form of } M\nabla S
\textbf{>} \text{What orbits are possible around black holes?}
\textbf{>} \text{What are the constraints on } (p,e) \text{ and }(r,\phi) \text{ for each orbit?}
\textbf{>} \text{What is the mapping between } (p,e) \text{ and }(r,\phi) \text{?}
\textbf{>} \text{How can we verify that both descriptions are equivalent?}
\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Analytical time-like geodesics in Schwarzschild space-time (Kostic, Gen. Rel. Grav., 2012)

\text{Transformation between } (p,e) \to (r,\phi)

Analytical time-like geodesics in Schwarzschild space-time (Kostic, Gen. Rel. Grav., 2012)

Stable Circular Orbit

\text{Transformation between } (p,e) \to (r,\phi)

Analytical time-like geodesics in Schwarzschild space-time (Kostic, Gen. Rel. Grav., 2012)

Elliptical Orbit

\text{Transformation between } (p,e) \to (r,\phi)

Analytical time-like geodesics in Schwarzschild space-time (Kostic, Gen. Rel. Grav., 2012)

Hyperbolic Orbit

\text{Transformation between } (p,e) \to (r,\phi)

Analytical time-like geodesics in Schwarzschild space-time (Kostic, Gen. Rel. Grav., 2012)

Unstable Circular Orbit

\text{Transformation between } (p,e) \to (r,\phi)

Analytical time-like geodesics in Schwarzschild space-time (Kostic, Gen. Rel. Grav., 2012)

Plunge Orbit

\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Circular

Elliptical

Hyperbolic

Plunge

\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Elliptical

Hyperbolic

Plunge

Circle

\tilde{E}^2 = \left(1-\frac{2M}{r} \right)^2/\left(1-\frac{3M}{r} \right)
\tilde{J}^2 = \frac{Mr}{1-3M/r}
\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Elliptical

Hyperbolic

Plunge

Circle

\tilde{E}^2 = \left(1-\frac{2M}{r} \right)^2/\left(1-\frac{3M}{r} \right)
\tilde{J}^2 = \frac{Mr}{1-3M/r}
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, 0, 0, L/r^2\right)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Elliptical

Hyperbolic

Plunge

Circle

\tilde{E}^2 = \left(1-\frac{2M}{r} \right)^2/\left(1-\frac{3M}{r} \right)
\tilde{J}^2 = \frac{Mr}{1-3M/r}
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, 0, 0, L/r^2\right)
(\dot{p_t},\dot{p_r},\dot{p_\theta},\dot{p_\phi})=(\dot{E}, \dot{p_r}, 0, \dot{L})=(0,0,0,0)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
(p_{t,0},p_{r,0}, p_{\theta,0}, p_{\phi,0})=(-E, 0, 0, L)
\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Hyperbolic

Plunge

Circle

\tilde{E}^2 = \left(1-\frac{2M}{r} \right)^2/\left(1-\frac{3M}{r} \right)
\tilde{J}^2 = \frac{Mr}{1-3M/r}
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, 0, 0, L/r^2\right)
(\dot{p_t},\dot{p_r},\dot{p_\theta},\dot{p_\phi})=(\dot{E}, \dot{p_r}, 0, \dot{L})=(0,0,0,0)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
(p_{t,0},p_{r,0}, p_{\theta,0}, p_{\phi,0})=(-E, 0, 0, L)

Ellipse

0.95<\tilde{E}^2<1
\tilde{J}^2>12M^2
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, \left(1-\frac{2M}{r}\right){p_r}, 0, L/r^2\right)
(\dot{p_t},\dot{p_r},\dot{p_\theta},\dot{p_\phi})=(\dot{E}, \dot{p_r}, 0, \dot{L})=(0,\dot{p_r},0,0)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
(p_{t,0},p_{r,0}, p_{\theta,0}, p_{\phi,0})=(-E, p_{r,0}, 0, L)
\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Circle

\tilde{E}^2 = \left(1-\frac{2M}{r} \right)^2/\left(1-\frac{3M}{r} \right)
\tilde{J}^2 = \frac{Mr}{1-3M/r}
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, 0, 0, L/r^2\right)
(\dot{p_t},\dot{p_r},\dot{p_\theta},\dot{p_\phi})=(\dot{E}, \dot{p_r}, 0, \dot{L})=(0,0,0,0)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
(p_{t,0},p_{r,0}, p_{\theta,0}, p_{\phi,0})=(-E, 0, 0, L)

Ellipse

0.95<\tilde{E}^2<1
\tilde{J}^2>12M^2
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, \left(1-\frac{2M}{r}\right){p_r}, 0, L/r^2\right)
(\dot{p_t},\dot{p_r},\dot{p_\theta},\dot{p_\phi})=(\dot{E}, \dot{p_r}, 0, \dot{L})=(0,\dot{p_r},0,0)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
(p_{t,0},p_{r,0}, p_{\theta,0}, p_{\phi,0})=(-E, p_{r,0}, 0, L)

Ellipse

Unbound

:(
\textbf{>} \text{Transformation between } (p,e) \to (r,\phi)

Circle

\tilde{E}^2 = \left(1-\frac{2M}{r} \right)^2/\left(1-\frac{3M}{r} \right)
\tilde{J}^2 = \frac{Mr}{1-3M/r}
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, 0, 0, L/r^2\right)
(\dot{p_t},\dot{p_r},\dot{p_\theta},\dot{p_\phi})=(\dot{E}, \dot{p_r}, 0, \dot{L})=(0,0,0,0)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
(p_{t,0},p_{r,0}, p_{\theta,0}, p_{\phi,0})=(-E, 0, 0, L)

Ellipse

0.95<\tilde{E}^2<1 \to 0\leq e < 1
\tilde{J}^2>12M^2 \to p>6+2e
(\dot{t},\dot{r},\dot{\theta},\dot{\phi})=\left(\left(1-\frac{2M}{r}\right)^{-1}E, \left(1-\frac{2M}{r}\right){p_r}, 0, L/r^2\right)
(\dot{p_t},\dot{p_r},\dot{p_\theta},\dot{p_\phi})=(\dot{E}, \dot{p_r}, 0, \dot{L})=(0,\dot{p_r},0,0)
(t_0, r_0, \theta_0, \phi_0) = (0, r_0, \pi/2,0)
(p_{t,0},p_{r,0}, p_{\theta,0}, p_{\phi,0})=(-E, p_{r,0}, 0, L)

Ellipse

Constraints:

0.95<\tilde{E}^2<1
\tilde{J}^2>12M^2

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

Mission Statement

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
H(\vec{x})

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\dot{x}=f(x)
\textbf{Neural ODE}
x(t)
\textbf{Neural ODE}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\dot{x}=f(x)
\textbf{ODE Solver}
x(t)
\textbf{Neural Net}
+
\dot{x}=f(x)
x(t)

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\dot{x}=f(x)
\textbf{ODE Solver}
x(t)
\textbf{Neural Net}
+
\dot{x}=f_{NN}(\vec{x}(t,\eta))
x(t)

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\dot{x}=f(x)
\textbf{ODE Solver}
x(t)
\textbf{Neural Net}
+
\dot{x}=f_{NN}(\vec{x}(t,\eta))
x(t)
\text{min}_{\eta} \mathcal{L} = \sum_{i=1}^N |x(t)-\hat{x}(t)|^2

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\dot{x}=f(x,\mathcal{F}(x))
x(t)
\textbf{Neural ODE}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\dot{x}=f(x,\mathcal{F}(x))
x(t)
\textbf{Neural ODE}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\textbf{Discover Hamiltonian (in GENERIC Form) of EMRIs}
\textbf{from Gravitational Waves using Neural ODEs}
H

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\textbf{Discover Hamiltonian (in GENERIC Form) of EMRIs}
\textbf{from Gravitational Waves using Neural ODEs}
H=H_{\text{conservative}}+H_{\text{dissipative}}

Mission Statement

\textbf{Learn Physics of Binary Black Holes!}
\textbf{Learn Physics of Eccentric Mass Ratio Inspirals (EMRIs)}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{Discover Hamiltonian of EMRIs from Gravitational Wave}
\textbf{using Neural ODEs}
\textbf{Discover Hamiltonian (in GENERIC Form) of EMRIs}
\textbf{from Gravitational Waves using Neural ODEs}
H=H_{\text{conservative}}+H_{\text{dissipative}}

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

Introduction to GENERIC

G

E

N

E

R

I

C

Introduction to GENERIC

G

E

N

E

R

I

C

eneral

quation for

on

quilibrium

eversible

rreversible

oupling

Introduction to GENERIC

dU = dW + dQ

Introduction to GENERIC

dU = \underbrace{dW} +\underbrace{dQ}

"reversible"

"irreversible"

dU = \underbrace{dW} +\underbrace{dQ}

Introduction to GENERIC

dU = \underbrace{dW} +\underbrace{dQ}

"reversible"

"irreversible"

dU = -pdV+TdS

Introduction to GENERIC

dU = \underbrace{dW} +\underbrace{dQ}

"reversible"

"irreversible"

\dot{x} = \dot{x}_{\text{reversible}} + \dot{x}_{\text{irreversible}}

Introduction to GENERIC

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Equilibrium

Inequilibrium

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Introduction to GENERIC

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Equilibrium

Inequilibrium

dU = {-p dV} +{T dS}
\dot{x} = L \nabla E + M \nabla S

Introduction to GENERIC

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Equilibrium

Inequilibrium

dU = {-p dV} +{T dS}
\dot{x} = L \nabla E + M \nabla S
\underbrace{\begin{pmatrix} \dot{p}\\ \dot{q} \end{pmatrix}}_{\dot{x}} = \underbrace{\begin{pmatrix} 0 & -1\\ +1 & 0 \end{pmatrix}}_{L} \underbrace{\begin{pmatrix} \frac{\partial H}{\partial p}\\ \frac{\partial H}{\partial q} \end{pmatrix}}_{\nabla E}

Conservative Dynamics

Introduction to GENERIC

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Equilibrium

Inequilibrium

dU = {-p dV} +{T dS}
\dot{x} = L \nabla E + M \nabla S
\underbrace{\begin{pmatrix} \dot{p}\\ \dot{q} \end{pmatrix}}_{\dot{x}} = \underbrace{\begin{pmatrix} ? & ?\\ ? & ? \end{pmatrix}}_{M} \underbrace{\begin{pmatrix} \frac{\partial S}{\partial p}\\ \frac{\partial S}{\partial q} \end{pmatrix}}_{\nabla S}

Dissipative Dynamics

Introduction to GENERIC

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Equilibrium

Inequilibrium

dU = {-p dV} +{T dS}
\dot{x} = L \nabla E + M \nabla S
\frac{dU}{dt} = 0
M \nabla E =0

Introduction to GENERIC

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Equilibrium

Inequilibrium

dU = {-p dV} +{T dS}
\dot{x} = L \nabla E + M \nabla S
\frac{dU}{dt} = 0
M \nabla E =0
L \nabla S =0
\frac{dS}{dt} \geq 0

Introduction to GENERIC

dU = {dW} +{dQ}
\dot{x} = \dot{x}_{\text{R}} + \dot{x}_{\text{I}}

Equilibrium

Inequilibrium

dU = {-p dV} +{T dS}
\dot{x} = L \nabla E + M \nabla S
\frac{dU}{dt} = 0
M \nabla E =0
L \nabla S =0
\frac{dS}{dt} \geq 0
L^T=-L
M^T=M, M\geq0

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

Examples of GENERIC

Examples of GENERIC

x=\{q,p,S\}

State Variables

x=\{q,p,S\}

State Variables

Examples of GENERIC

x=\{q,p,S\}

State Variables

E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS

Energy

E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS

Energy

Examples of GENERIC

x=\{q,p,S\}

State Variables

E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS

Energy

S = S

Energy

Entropy

E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS

Energy

S = S

Energy

Entropy

Examples of GENERIC

x=\{q,p,S\}

State Variables

E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS

Energy

S = S

Energy

Entropy

\nabla E =(kq,p/m,T)
\nabla S = (0,0,1)

Entropy

\nabla E =(kq,p/m,T)
\nabla S = (0,0,1)

Examples of GENERIC

x=\{q,p,S\}
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
S = S
\nabla E =(kq,p/m,T)
\nabla S = (0,0,1)
L={\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
M=\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}

Examples of GENERIC

{\begin{pmatrix} \dot{q} \\ \dot{p}\\ \dot{S} \end{pmatrix}}=
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
S = S
{\begin{pmatrix} kq \\ p/m\\ T \end{pmatrix}}+
{\begin{pmatrix} 0 \\ 0\\ 1 \end{pmatrix}}
{\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}

Examples of GENERIC

{\begin{pmatrix} \dot{q} \\ \dot{p}\\ \dot{S} \end{pmatrix}}=
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
S = S
{\begin{pmatrix} kq \\ p/m\\ T \end{pmatrix}}+
{\begin{pmatrix} 0 \\ 0\\ 1 \end{pmatrix}}
{\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}
\dot{q}=p

Examples of GENERIC

{\begin{pmatrix} \dot{q} \\ \dot{p}\\ \dot{S} \end{pmatrix}}=
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
S = S
{\begin{pmatrix} kq \\ p/m\\ T \end{pmatrix}}+
{\begin{pmatrix} 0 \\ 0\\ 1 \end{pmatrix}}
{\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}
\dot{q}=p
\dot{p}=-q-\gamma p

Examples of GENERIC

{\begin{pmatrix} \dot{q} \\ \dot{p}\\ \dot{S} \end{pmatrix}}=
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
S = S
{\begin{pmatrix} kq \\ p/m\\ T \end{pmatrix}}+
{\begin{pmatrix} 0 \\ 0\\ 1 \end{pmatrix}}
{\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}
\dot{S}=\gamma p^2
\dot{q}=p
\dot{p}=-q-\gamma p

Examples of GENERIC

{\begin{pmatrix} \dot{q} \\ \dot{p}\\ \dot{S} \end{pmatrix}}=
S = S
\underbrace{\begin{pmatrix} kq \\ p/m\\ T \end{pmatrix}}_{\nabla E}+
\underbrace{\begin{pmatrix} 0 \\ 0\\ 1 \end{pmatrix}}_{\nabla S}
\underbrace{\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}_{L}
\underbrace{\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}}_{M}
\dot{S}=\gamma p^2
\dot{q}=p
\dot{p}=-q-\gamma p
\dot{x} = L \nabla E + M \nabla S

Examples of GENERIC

x=\{q,p,S\}
x=\{q_1,p_1,s_a, q_2, p_2, s_b\}
x=\{q,v,E_1,E_2\}

Examples of GENERIC

x=\{q,p,S\}
x=\{q_1,p_1,s_a, q_2, p_2, s_b\}
x=\{q,v,E_1,E_2\}
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
E = {\frac{|\vec{p}_1|^2}{2m}+ \frac{|\vec{p}_2|^2}{2m}}+{e_a(\lambda_a, s_a)}
+e_b(\lambda_b, s_b)
E =\frac{1}{2}mv^2+E_1+E_2

Examples of GENERIC

x=\{q,p,S\}
x=\{q_1,p_1,s_a, q_2, p_2, s_b\}
x=\{q,v,E_1,E_2\}
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
E = {\frac{|\vec{p}_1|^2}{2m}+ \frac{|\vec{p}_2|^2}{2m}}+{e_a(\lambda_a, s_a)}
+e_b(\lambda_b, s_b)
E =\frac{1}{2}mv^2+E_1+E_2
S=s_a+s_b
S=S(E_1,qA_c,N)
+S(E_2,(2L_g-q)A_c,N)
S=S

Examples of GENERIC

x=\{q,p,S\}
x=\{q_1,p_1,s_a, q_2, p_2, s_b\}
x=\{q,v,E_1,E_2\}
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
E = {\frac{|\vec{p}_1|^2}{2m}+ \frac{|\vec{p}_2|^2}{2m}}+{e_a(\lambda_a, s_a)}
+e_b(\lambda_b, s_b)
E =\frac{1}{2}mv^2+E_1+E_2
S=s_a+s_b
S=S(E_1,qA_c,N)
+S(E_2,(2L_g-q)A_c,N)
S=S
L=\begin{pmatrix}\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0\end{pmatrix}
L= {\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
L=\frac{1}{m}\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & p_1 A_{\mathrm{c}} & -p_2 A_{\mathrm{c}} \\ 0 & -p_1 A_{\mathrm{c}} & 0 & 0 \\ 0 & p_2 A_{\mathrm{c}} & 0 & 0\end{array}\right)
x=\{q,p,S\}
x=\{q_1,p_1,s_a, q_2, p_2, s_b\}
x=\{q,v,E_1,E_2\}
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
E = {\frac{|\vec{p}_1|^2}{2m}+ \frac{|\vec{p}_2|^2}{2m}}+{e_a(\lambda_a, s_a)}
+e_b(\lambda_b, s_b)
E =\frac{1}{2}mv^2+E_1+E_2
S=s_a+s_b
S=S(E_1,qA_c,N)
+S(E_2,(2L_g-q)A_c,N)
S=S
L=\begin{pmatrix}\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0\end{pmatrix}
L= {\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
L=\frac{1}{m}\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & p_1 A_{\mathrm{c}} & -p_2 A_{\mathrm{c}} \\ 0 & -p_1 A_{\mathrm{c}} & 0 & 0 \\ 0 & p_2 A_{\mathrm{c}} & 0 & 0\end{array}\right)

Examples of GENERIC

M=\begin{pmatrix}\begin{array}{cccccc}\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \kappa \frac{\theta_b}{\theta_a} & -\kappa \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\kappa & \kappa \frac{\theta_a}{\theta_b}\end{array}\end{pmatrix}
M=\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}
M=\left(\begin{array}{rrrr}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha & -\alpha \\ 0 & 0 & -\alpha & \alpha\end{array}\right)
x=\{q,p,S\}
x=\{q_1,p_1,s_a, q_2, p_2, s_b\}
x=\{q,v,E_1,E_2\}
E =\frac{p^2}{2m}+\frac{1}{2}kq^2+TS
E = {\frac{|\vec{p}_1|^2}{2m}+ \frac{|\vec{p}_2|^2}{2m}}+{e_a(\lambda_a, s_a)}
+e_b(\lambda_b, s_b)
E =\frac{1}{2}mv^2+E_1+E_2
S=s_a+s_b
S=S(E_1,qA_c,N)
+S(E_2,(2L_g-q)A_c,N)
S=S
L=\begin{pmatrix}\mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0\end{pmatrix}
L= {\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}}
L=\frac{1}{m}\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & p_1 A_{\mathrm{c}} & -p_2 A_{\mathrm{c}} \\ 0 & -p_1 A_{\mathrm{c}} & 0 & 0 \\ 0 & p_2 A_{\mathrm{c}} & 0 & 0\end{array}\right)
M=\begin{pmatrix}\begin{array}{cccccc}\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \kappa \frac{\theta_b}{\theta_a} & -\kappa \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\kappa & \kappa \frac{\theta_a}{\theta_b}\end{array}\end{pmatrix}
M=\frac{\gamma}{mT}{\begin{pmatrix} 0 & 0 & 0 \\ 0 & (mT)^2 & -pmT \\ 0 & -pmT & p^2 \end{pmatrix}}
M=\left(\begin{array}{rrrr}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha & -\alpha \\ 0 & 0 & -\alpha & \alpha\end{array}\right)

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

​​GENERIC for Black Holes (No Dissipation)

H = \frac{p^2}{2}

​​GENERIC for Black Holes (No Dissipation)

H = \frac{p^2}{2}=\text{Don't be lazy, Ref! Write it on the board.}

​​GENERIC for Black Holes (No Dissipation)

H = \frac{1}{2}\left[-\left(1-\frac{2M}{r}\right)^{-1}(p_t)^2+ \left(1-\frac{2M}{r}\right)(p_r)^2+\\ r^{-2}(p_\theta)^2+ r^{-2}\sin^{-2}\theta(p_\phi)^2\right]
\begin{pmatrix} \dot{t} \\ \dot{r} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{p_t} \\ \dot{p_r} \\ \dot{p_\theta} \\ \dot{p_\phi} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0\\ \end{pmatrix} \begin{pmatrix} {\partial H} / {\partial {t}} \\ \partial H / \partial {r} \\ \partial H / \partial {\theta} \\ \partial H / \partial {\phi} \\ \partial H / \partial {p_t} \\ \partial H / \partial {p_r} \\ \partial H / \partial {p_\theta} \\ \partial H / \partial {p_\phi} \end{pmatrix}

​​GENERIC for Black Holes (No Dissipation)

H = \frac{1}{2}\left[-\left(1-\frac{2M}{r}\right)^{-1}(p_t)^2+ \left(1-\frac{2M}{r}\right)(p_r)^2+\\ r^{-2}(p_\theta)^2+ r^{-2}\sin^{-2}\theta(p_\phi)^2\right]
\begin{pmatrix} \dot{t} \\ \dot{r} \\ \dot{\theta} \\ \dot{\phi} \\ \dot{p_t} \\ \dot{p_r} \\ \dot{p_\theta} \\ \dot{p_\phi} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0\\ \end{pmatrix} \begin{pmatrix} {\partial H} / {\partial {t}} \\ \partial H / \partial {r} \\ \partial H / \partial {\theta} \\ \partial H / \partial {\phi} \\ \partial H / \partial {p_t} \\ \partial H / \partial {p_r} \\ \partial H / \partial {p_\theta} \\ \partial H / \partial {p_\phi} \end{pmatrix}
L
\nabla E
\dot{x}

​​GENERIC for Black Holes (No Dissipation)

H = \frac{1}{2}\left[-\left(1-\frac{2M}{r}\right)^{-1}(p_t)^2+ \left(1-\frac{2M}{r}\right)(p_r)^2+\\ r^{-2}(p_\theta)^2+ r^{-2}\sin^{-2}\theta(p_\phi)^2\right]
\dot{t} = \left(1-\frac{2M}{r}\right)^{-1}E
\dot{r} = \left(1-\frac{2M}{r}\right){p_r}
\dot{\theta} = r^{-2}{p_\theta}
\dot{\phi} = r^{-2}\sin^{-2}\theta{L}
\dot{p_t} =\dot{E}=0
\dot{p_r} = -\frac{1}{2}\left[\left(1-\frac{2M}{r}\right)^{-2}\left( \frac{2M}{r^2}\right) (p_t)^2 + \frac{2M}{r^2}(p_r)^2-2r^{-3}(p_{\theta})^2-2r^{-3}\sin^{-2}\theta (p_{\phi})^2\right]
\dot{p_\theta} =-\frac{1}{2}\left[ -2r^{-2}\sin^{-3}\theta\cos\theta\right](p_\phi)^2
\dot{p_\phi} =\dot{L}=0
\dot{x}

​​GENERIC for Black Holes (No Dissipation)

H = \frac{1}{2}\left[-\left(1-\frac{2M}{r}\right)^{-1}(p_t)^2+ \left(1-\frac{2M}{r}\right)(p_r)^2+\\ r^{-2}(p_\theta)^2+ r^{-2}\sin^{-2}\theta(p_\phi)^2\right]

​​GENERIC for Black Holes (No Dissipation)

​​GENERIC for Black Holes (No Dissipation)

​​GENERIC for Black Holes (No Dissipation)

​​GENERIC for Black Holes (No Dissipation)

​​GENERIC for Black Holes (No Dissipation)

​​GENERIC for Black Holes (No Dissipation)

​​GENERIC for Black Holes (No Dissipation)

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

Binary Black Holes

  • Neural ODE DynAMO Proposal Goal
  • Introduction to GENERIC Formalism
  • Examples of GENERIC
    • Damped Harmonic Oscillator
    • Thermolastic Double Pendulum
    • Two Boxes Exchanging Energy
  • ​​GENERIC for Black Holes (No Dissipation)
  • GENERIC for Black Holes (Gravitational Waves)

GENERIC for Black Holes (Gravitational Waves)

M\nabla S = ?