Ref Bari
Change: NN_chiphi has only one dense layer with ansatz cos(chi)
Change: NN_chiphi has only 1 dense layer with ansatz cos(chi)
Change: NN_chiphi has 4 dense layers with ansatz chi, phi, p, e
Change: NN_chiphi has 5 dense layers with ansatz chi, phi, p, e, cos(chi)
Change: NN_chiphi has 6 dense layers with ansatz chi, phi, p, e, cos(chi), sqrt(p)^3
Change: NN_chiphi has 6 dense layers with ansatz 1/p, p^2, p, e, cos(chi), sqrt(p)^3
Change: NN_chiphi has 8 dense layers with ansatz 1/p, p^2, p, e, cos(chi), sqrt(p)^3, 1/sqrt(p), sqrt(p)
Change: NN_chiphi has all 9 dense layers
Change: Removed e[p > 6 + 2*chi] - chi > 0 constraint
Change: Added (d/dt)^2(e) > 0 (1.0f2 L, 1.0f0 R)
Change: Noise = 1e-1 (a), 1e-2 (b), 1e-3 (c), 1e-4 (d)
(a)
(b)
(c)
(d)
Change: Learning Rate BFGS: 0.0005 for iteration #99, 0.0001 for iteration #100
Change: Learning Rate BFGS: 0.001 for iteration #99, 5e-4 for iteration #100
Change: Learning Rate BFGS: 0.001 for iteration #99, 5e-5 for iteration #100
Change: dt = 5.0 (instead of 10.0)
Change: maxiters = 1000 for iteration #100
Change: 1f-3
Change: last term in loss is 1f-3*sum(abs2, NN_params)
Change: last term in loss is 1f-2*sum(abs2, NN_params)
Change: 32 --> 64 nodes in each dense layer
Change: Add sin(chi) and p*e anstasz to NN_chiphi
Change: num_optimization_increments = 50
Change: number of iterations = 1000
Change: Optimize iterations #97, 98, 99, and 100 with progressively smaller learning rates and greater max_iters