T-REX

Time-Resolving Black Holes from LEO

Ref Bari, Brown University

Introduction

T-REX

What is a black hole?

Introduction

T-REX

What is a black hole?

How do you image a black hole?

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

T-REX Primary Science Objectives

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

T-REX Primary Science Objectives

T-REX (u,v) Coverage

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

T-REX Primary Science Objectives

T-REX (u,v) Coverage

T-REX Engineering Challenges

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

T-REX Primary Science Objectives

T-REX (u,v) Coverage

T-REX Engineering Challenges

T-REX SWaPC Requirements

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

T-REX Primary Science Objectives

T-REX (u,v) Coverage

T-REX Engineering Challenges

T-REX SWaPC Requirements

T-REX Concept of Operations

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

T-REX Primary Science Objectives

T-REX (u,v) Coverage

T-REX Engineering Challenges

T-REX SWaPC Requirements

T-REX Concept of Operations

T-REX Timeline & Funding

Introduction

T-REX

What is a black hole?

How do you image a black hole?

How do you record a black hole?

T-REX Primary Science Objectives

T-REX (u,v) Coverage

T-REX Engineering Challenges

T-REX SWaPC Requirements

T-REX Concept of Operations

T-REX Timeline & Funding

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

Ref Bari

Physics MS, Brown

Binary Black Holes

Physics MS, Brown

Spaceflight Heritage

EQUiSat

SBUDNIC

PVDX

Spaceflight Heritage

SBUDNIC

PVDX

  • 1U CubeSat (1.3 kg, 10x10x10 cm)
  • Payload: High-Power LED Array + LiFePO4 Batteries (<6 kg)
  • ADCS: Passive Magnetic Atitude Control System
  • Power Generated: 1.3W (Top+Bottom Panels) & .7W (Side)
  • Total Cost: $5000
    • All components built in-house at Brown Engineering Lab

EQUiSat

  • 3U CubeSat (3 kg, 30x10x10 cm)
  • Payload: Ham Radio Transceiver, 2 Cameras, Arduino Nano
  • ADCS: Spring-Loaded + Aerodynamic Drag Sail
  • Power Generated: 1.3W (Top+Bottom Panels) & .7W (Side)
  • Total Cost: $10,000
    • 3D-Printed Components at BDW
  • 3U CubeSat (~6 kg, 30x10x10 cm)
  • Payload: Perovskite Solar Panels + Robotic Arm + Digital Display
  • ADCS: Magnetorquers
  • Total Cost: ~$30,000
    • 3D-Printed Components at BDW
    • CUBECOM S-Band Transceiver ($10,000)

Spaceflight Heritage

SBUDNIC

PVDX

EQUiSat

T-REX

Spaceflight Heritage

T-REX

Time Resolving Experiment Satellite

T-REX

Capture Time-Resolved Videos of M87 & Sgr A*

Time-Resolve Binary Black Hole Systems

Rapid mm-wave time-domain observations of transient targets

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

Capture the first video of Sgr A*

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

Size

Weight

Power

Power

\sim 2.5m
\sim 25-50kg
22 kg
300W
400mW @15^{\circ}K
\$10 \text{mln}
754 mm \times \\ 146 mm \times \\ 300 mm
\$2-5 \text{Mln}
\$4-11 \text{Mln}
10-20W
\text{(deployment)}
5-7 kg
\sim 10W
\sim \$ 1 \text{mln}
\sim0.02m^3
\sim 1 kg
\sim 3W
\sim \$1\text{mln}^*
60 mm\times \\60mm \times \\32 mm
1U (100 mm\times \\100 mm \times \\100 mm)
1.2 kg
1.2 kg
100W\\\text{generated}
\sim \$100\text{k}
3U (300 mm\times \\300 mm \times \\300 mm)
100W
3 kg
\sim \$1\text{mln}^*
\sim 4W
\sim 1 kg^*
12 mm \times \\12 mm
\sim \$1\text{mln}^*
\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A

Cost

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

NASA Pioneers

Aspera

Pandora

StarBurst

PUEO

(Galaxy Evolution via UV)

(Exoplanet Explorer)

(Neutron Stars via Gamma Rays)

(Particle Physics via High-Energy Neutrinos)

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

T-REX

Oct

$175,000

>$4M

>$400,000

Princeton

Physics

Canadian

Institutions

T-REX

Team

Advisors

Inner

circle

T-REX

Canadian

Institutions

T-REX

Team

Advisors

Inner

circle

T-REX

Joshua Escobar

Space Instrument Engineer (IMAP)

Margaret Shaw-Lecerf

Space Instrument Engineer (IMAP)

Jamie Raskin

Space Instrument Engineer (Parker Solar Probe) 

Michael Galvin

Principal Mechanical Engineer (Princeton Space Physics Group)

Princeton

Physics

T-REX

Team

Advisors

T-REX

Inner

circle

Luke Anderson

Lead Mechanical Engineer (Orion Space Solutions)

Laura Fissel

Assistant Professor, Queen's University (PI, BVEX)

Locke Spencer

Associate Professor, University of Lethbridge (Experimental Astrophysics)

Jayshri Sabarinathan

Associate Professor, University of Western Ontario (Engineering)

Princeton

Physics

T-REX

Team

T-REX

Inner

circle

Canadian

Institutions

Rick Fleeter

Adjunct Associate Professor, Brown

Travis Fischer

ESA/AURA Astronomer, Space Telescope Science Institute

Krista Lynne Smith

Associate Professor, Texas A&M

Andrew Miller

Postdoc, Utrecht University (LIGO Collaboration)

Princeton

Physics

Inner

circle

Canadian

Institutions

Advisors

T-REX

Mia Frickey

BS, Applied Math (Brown)

Graham Neely

BS, Engineering (Brown)

Kaylee DeGennaro

BS, Astrophysics (Brown)

Alex Khosrowshahi

BS, CS & Physics (Brown)

Sebastian Abreu

MS, Engineering (Columbia)

Gayda Mohamed

Fulbright Scholar (UAE)

Noah Barton

MS, Physics (Brown)

Sharanya Palit

MS, Physics (Brown)

Princeton

Physics

Canadian

Institutions

T-REX

Team

Advisors

Inner

circle

T-REX

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

T-REX

T-REX

R

Event Horizon

Singularity

T-REX

R

Event Horizon

Singularity

Photon Sphere

1.5R

T-REX

R

Event Horizon

Black Hole Shadow

1.5R

Photon Ring

2.6R_s

T-REX

R

Event Horizon

Black Hole Shadow

1.5R_s

Photon Ring

2.6R_s

Innermost Stable

Circular Orbit

3R_s

T-REX

ds^2 = -\left(1-\frac{2M}{R}\right)dt^2 + -\left(1-\frac{2M}{R}\right)^{-1}dr^2 + r^2 d\Omega^2
p^\mu p_\mu = -m^2 \to \left(\frac{dr}{d\tau}\right)^2=E^2-\left(1-\frac{2M}{r} \right)\left(1+ \frac{L^2}{r^2}\right)

Event Horizon

Photon Ring

Shadow

ISCO

T-REX

ds^2 = -\left(1-\frac{2M}{R}\right)dt^2 + -\left(1-\frac{2M}{R}\right)^{-1}dr^2 + r^2 d\Omega^2
p^\mu p_\mu = -m^2 \to \left(\frac{dr}{d\tau}\right)^2=E^2-\left(1-\frac{2M}{r} \right)\left(1+ \frac{L^2}{r^2}\right)

Event Horizon

Photon Ring

Shadow

ISCO

T-REX

ds^2 = -\left(1-\frac{2M}{R}\right)dt^2 + -\left(1-\frac{2M}{R}\right)^{-1}dr^2 + r^2 d\Omega^2
p^\mu p_\mu = -m^2 \to \left(\frac{dr}{d\tau}\right)^2=E^2-\left(1-\frac{2M}{r} \right)\left(1+ \frac{L^2}{r^2}\right)

Event Horizon

Photon Ring

Shadow

ISCO

Photon Ring

T-REX

ds^2 = -\left(1-\frac{2M}{R}\right)dt^2 + -\left(1-\frac{2M}{R}\right)^{-1}dr^2 + r^2 d\Omega^2
p^\mu p_\mu = -m^2 \to \left(\frac{dr}{d\tau}\right)^2=E^2-\left(1-\frac{2M}{r} \right)\left(\frac{L^2}{r^2}\right)

Event Horizon

Photon Ring

Shadow

ISCO

Photon Ring

T-REX

ds^2 = -\left(1-\frac{2M}{R}\right)dt^2 + -\left(1-\frac{2M}{R}\right)^{-1}dr^2 + r^2 d\Omega^2
p^\mu p_\mu = -m^2 \to \left(\frac{dr}{d\tau}\right)^2=E^2-\left(1-\frac{2M}{r} \right)\left(1+\frac{L^2}{r^2}\right)

Event Horizon

Photon Ring

Shadow

ISCO

ISCO

T-REX

R

T-REX

T-REX

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

M87

T-REX

SED, Sgr A*

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

T-REX

Spectral Energy Distribution (Sgr A*)

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

radio

infrared

T-REX

SED, Sgr A*

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

T-REX

SED, Sgr A*

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

\theta\sim \frac{\lambda}{D}
\sim 50\mu as

T-REX

\sim 50\mu as

T-REX

\sim 50\mu as

T-REX

SED, Sgr A*

The Supermassive Black Hole at the Galactic Center (Melia & Falcke, 2001)

\theta\sim \frac{\lambda}{D}
\sim 50\mu as

T-REX

T-REX

Knox et al., “Spatial coherence from ducks”, Physics Today, March 2010

T-REX

T-REX

T-REX

T-REX

T-REX

E_1
E_2

T-REX

V(r_1 ,r_2)=\langle E_1^*
E_2\rangle

T-REX

V(r_1 ,r_2)=\langle E_1^*
E_2\rangle

T-REX

V(r_1 ,r_2)=\langle E_1^*
E_2\rangle

T-REX

V(r_1 ,r_2)=\langle E_1^*
E_2\rangle

T-REX

V(r_1 ,r_2)=\langle E_1^*
E_2\rangle
E_1
E_2

T-REX

T-REX

T-REX

T-REX

T-REX

T-REX

T-REX

T-REX

T-REX

EHT

(2019)

Event Horizon Telescope (EHT)

BHEX

(2031)

Black Hole Explorer Satellite (BHEX) Mission

BHEX

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda
T_{orb}=90 \text{ min}
  • Time-scale of Sgr A* accretion disk: 4<T<30 minutes (0<J<1)
  • Time-scale of LEO Orbit: 90 minutes, with 22-minute (u,v) coverage

T-REX

Sub-milli arcsecond angular resolution:

Dual short and long baseline lengths

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

22\mu as<\theta_{\text{BHEX-Mini}} < 1800 \mu as
5.6 G \lambda < b_{s s}<9.3 G \lambda
0.11 G \lambda < b_{s g}<3.5 G \lambda

T-REX

\text{To time resolve Sgr A*, we must have} \\f_{coverage}>50\% \text{ in } t < T_{ISCO} \sim 30 \text{ min}
  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

T-REX

Capture Time-Resolved Videos of M87 & Sgr A*

Time-Resolve Binary Black Hole Systems

Conduct VLBI Survey of AGN targets at 86 GHz

T-REX

Capture Time-Resolved Videos of M87 & Sgr A*

Time-Resolve Binary Black Hole Systems

Conduct VLBI Survey of AGN targets at 86 GHz

T-REX

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

400\text{ km}

Capture Time-Resolved Videos of M87 & Sgr A*

"Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope​" Palumbo et. al. ApJ 2019

T-REX

T-REX

"Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope​" Palumbo et. al. ApJ 2019

T-REX

"Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope​" Palumbo et. al. ApJ 2019

T-REX

T-REX

$$\alpha=-\frac{\xi}{\sin i}, \quad \beta= \pm \sqrt{\eta+a^2 \cos ^2 i-\xi^2 \cot ^2 i}$$

$$M=\frac{c^2 D}{G} \frac{\theta_{sh}}{\mathcal{F}(a, i)}$$

\xi=\xi(r, M, a), \, \, \, \, \eta=\eta(r, M, a)

T-REX

\dot{M} = -2\pi R \rho u_R
T(R) = 2\pi \nu \rho R^3 \frac{d\Omega}{dR}
\Omega(R) = \sqrt{\frac{GM}{R^3}}

T-REX

Supplement (u,v) coverage at 86 GHz

Enable parameter estimation of Sgr A*/M87

Achieve Space-Space VLBI

20,200\text{ km}
400\text{ km}

Videos of M87 & Sgr A*

"The Black Hole Explorer: Motivation and Vision​" Johnson et. al. arXiv 2024

T-REX

Capture Time-Resolved Videos of M87 & Sgr A*

Time-Resolve Binary Black Hole Systems

Conduct VLBI Survey of AGN targets at 86 GHz

T-REX

Time-Resolve Binary Black Hole Systems

T-REX

Time-Resolve Binary Black Hole Systems

T-REX

Time-Resolve Binary Black Hole Systems

T-REX

Capture Time-Resolved Videos of M87 & Sgr A*

Time-Resolve Binary Black Hole Systems

Conduct VLBI Survey of AGN targets at 86 GHz

T-REX

Conduct VLBI Survey of AGN targets at 86 GHz

"The Black Hole Explorer: Motivation and Vision​" Johnson et. al. arXiv 2024

T-REX

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

20000\text{ km}
400\text{ km}
\text{MEO Satellite}
\text{T-REX}

"Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope​" Palumbo et. al. ApJ 2019

\text{T-REX}
\text{EHT}
\text{T-REX}
\text{EHT}
\text{LEO}
\text{MEO}

T-REX

\text{MEO Satellite}
F_d

$$\theta$$

F_d

$$\theta$$

\text{LEO}
\text{MEO}
\text{LEO}
\text{MEO}
\text{LEO}
\text{MEO}
\text{LEO: Radio Arm (RA)}
\text{MEO: Optical Arm (OA)}
\tau_{res}
\theta_{res}
\frac{P}{4}=\frac{1.5\text{ hr}}{4} = 0.38 \text{ hr}
\frac{\lambda}{D}=\frac{3.5\text{ mm}}{12,400 \text{ km}} =58\mu as
\frac{P}{4}=\frac{12\text{ hr}}{4} \sim 3 \text{ hr}
\frac{\lambda}{D}=\frac{500\text{ nm}}{>3 \text{ km}} \leq 35\mu as
\text{EHT} \\ 50\mu as
\text{T-REX RA}\\ 180\mu as
\text{T-REX OA}\\ 2 as
\text{LEO: Radio Arm}
\text{MEO: Optical Arm}
t_{res} = 0.38 \text{ hr}
\theta_{res}=58\mu as
t_{res} = 3 \text{ hr}
\theta_{res} \leq 5\mu as
\textbf{EHT}
\text{}\\
\text{RA ["]}
\text{Dec ["]}
50\mu as
\textbf{T-REX RA}
180\mu as
\textbf{T-REX OA}
2as
A
B
C

Direct Detection

Heterodyne

Quantum VLBI

Direct Detection

Heterodyne

Quantum VLBI

M87

Sgr A*

10:15

11:00

8:00

Sgr A*

T-REX

a=13,000 \text{ km}
a=26,000 \text{ km}
a=6,000 \text{ km}
t_{\text{res}}\sim22.5 min
\theta_{\text{res}}\sim 35 \mu as
t_{\text{res}}\sim1 hr
\theta_{\text{res}}\sim 10 \mu as
t_{\text{res}}\sim3 hr
\theta_{\text{res}}\sim 6 \mu as

T-REX

T-REX

t=30\min
t=60\min
t=24 \text{ hr}
86 \text{ GHz}
230 \text{ GHz}
320 \text{ GHz}

"Imaging the event horizon of M87* from space on different timescales​" Shlentsova et. al. ApJ 2024

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength angular resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength angular resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

a=6,000 \text{ km}
\text{M}87
\text{Sgr} A^*

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Multifrequency Black Hole Imaging for the Next-generation Event Horizon Telescope (Chael et. al., 2023, ApJ)

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength angular resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Decreased signal loss

R_{\max } \approx \frac{P_t G_t G_r \eta}{k T_b B}\left(N_{\bmod }\right)

Distance: How much distance did the signal travel through free space? (LEO vs. MEO!)

P_r = P_tG_tG_r \left( \frac{\lambda}{4\pi R}\right)^2 \cdot \eta

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength angular resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength angular resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Potential Reduced ISM Scattering

Prospects of Detecting a Jet in Sagittarius A* with VLBI (Chavez et. al., ApJ 2024)

\text{T-REX}
\text{EHT}

Orbit design for mitigating interstellar scattering effects in Earth-space VLBI observations of Sgr A* (Aditya Tamar, Ben Hudson, Daniel C.M. Palumbo, A&A, 2025)

T-REX

\text{T-REX}
\text{EHT}

Potential Reduced ISM Scattering

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength resolution

32\mu as<\theta_{\text{T-REX}} < 1800 \mu as

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Dual-baseline capability

\text{BHEX}

Rapid coverage of (u,v) plane

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)

T-REX

\text{T-REX}
\text{EHT}

Dual-baseline capability

\text{BHEX}

Decreased signal loss from LEO

Decreased radiation environment in LEO vs. MEO

Metrics and Motivations for Earth–Space VLBI: Time-resolving Sgr A* with the Event Horizon Telescope (Palumbo et. al., ApJ 2019)

T-REX

\text{T-REX}
\text{EHT}

Dual-baseline capability

\text{BHEX}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\sigma=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_1 \mathrm{SEFD}_2}{2 \Delta \nu \tau}}
\text{Coherence Time}
\text{Thermal Noise}

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Infrared Thermal Emissions

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Limited Ground Coverage

T-REX

\text{T-REX}
\text{EHT}

Limited Ground Coverage

T-REX

\text{T-REX}
\text{EHT}

Limited Ground Coverage

T-REX

\text{T-REX}
\text{EHT}

Rapid (u,v) coverage

Decreased signal loss

Decreased radiation environment

Infrared Thermal Emissions

Limited Ground Coverage

Aggressive Slew Rate Required

Potential Reduced ISM Scattering

mm-wavelength resolution

Dual-baseline capability

T-REX

\text{T-REX}
\text{EHT}

Aggressive Slew Rate Required

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

T-REX

T-REX

T-REX SWaPC

Size

Weight

Power

Power

Cost

\sim 2.5m
\sim 25-50kg
22 kg
300W
400mW @15^{\circ}K
\$10 \text{mln}
754 mm \times \\ 146 mm \times \\ 300 mm
\$2-5 \text{Mln}
\$4-11 \text{Mln}
10-20W
\text{(deployment)}
5-7 kg
\sim 10W
\sim \$ 1 \text{mln}
\sim0.02m^3
\sim 1 kg
\sim 3W
\sim \$1\text{mln}^*
60 mm\times \\60mm \times \\32 mm
1U (100 mm\times \\100 mm \times \\100 mm)
1.2 kg
1.2 kg
100W\\\text{generated}
\sim \$100\text{k}
3U (300 mm\times \\300 mm \times \\300 mm)
100W
3 kg
\sim \$1\text{mln}^*
\sim 4W
\sim 1 kg^*
12 mm \times \\12 mm
\sim \$1\text{mln}^*
\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A

NASA Pioneers

Aspera

Pandora

StarBurst

PUEO

(Galaxy Evolution via UV)

(Exoplanet Explorer)

(Neutron Stars via Gamma Rays)

(Particle Physics via High-Energy Neutrinos)

Mission Parameters

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau_{\text{Coherence, T-REX}}\lessapprox 2 \text{ min} \sim 120 s
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

SEFD

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 100K

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 100K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 100K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\text{SEFD}_{\text{BHEX}}\sim 18,000 \text{ Jy}
\text{SEFD}_{\text{ALMA}}\sim 74 \text{ Jy}
\text{SEFD}_{\text{SMA}}\sim 6700 \text{ Jy}
\text{SEFD}_{\text{SMT}}\sim 10,500 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{T-REX - BHEX}}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{BHEX}} \mathrm{SEFD}_{\text{T-REX}}}{2 \Delta \nu \Delta t}}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{T-REX - BHEX}}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{BHEX}} \mathrm{SEFD}_{\text{T-REX}}}{2 \Delta \nu \Delta t}}
\sigma_{\text{T-REX - EHT}}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{EHT}} \mathrm{SEFD}_{\text{T-REX}}}{2 \Delta \nu \Delta t}}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{T-REX - BHEX}}=\frac{1}{0.75} \sqrt{\frac{(18,000 \text{ Jy})(32,000 \text{Jy})}{2 (32 \text{GHz}) (100s)}}
\sigma_{\text{T-REX - EHT}}=\frac{1}{0.75} \sqrt{\frac{(6000 \text{ Jy})(32,000 \text{Jy})}{2 (32 \text{GHz}) (10s)}}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 2\pi \cdot f \cdot \sigma_t
\sigma_t = \sigma_f \cdot \Delta t
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 2\pi \cdot f \cdot \sigma_t
\sigma_t = \sigma_f \cdot \Delta t
\sigma_t = 8\cdot 10^{-15} (\text{LISA USO})
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 8\cdot 10^{-15}s\sim 10^{-3} \text{ rad}<1 \text{ rad}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\Delta t = \text{10 s})
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\Delta t = \text{10 s})
L = 1-\exp\left(-2\pi^{2}f^{2}t^{2}\sigma_y^{2}\right)
L = 1-\exp\left[-2\pi^{2}(86\cdot 10^9)^{2}(10)^{2}(5\cdot 10^{-11})^{2}\right]\sim 1\%
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})=N_{\text {bits }} \times \Delta \nu \times 2_{\text {pol }} \times 2_{\text {Nyquist }}
\text{Rate}\times T_{orb} \times \text{Duty Cycle} = \text{Total Data (GB)}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{S-S} \sim \frac{\lambda}{D}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{S-S} \sim \frac{\lambda}{D}=\frac{3.5mm}{20,000 km}
\theta_{S-G} \sim \frac{\lambda}{D}=\frac{3.5mm}{400 km}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as

Systems Design

\sim85.3 kg
\sim 437 W
\sim \$25\text{ million}
N/A
T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\omega=\frac{2\pi}{P} = \frac{2\pi}{1.5 \text{ hr}\cdot \frac{3600 s}{1 \text{hr}}}=1.16\times 10^{-3} rad/s
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
0.11 G \lambda < b_{s g}<3.5 G \lambda
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}
\theta_{FOV} = 180 \mu as
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau<\frac{1}{\omega D_\lambda \theta_{\mathrm{FOV}}}=\frac{1}{(1.16\times 10^{-3} \frac{rad}{s}) (3.5 G\lambda)(1.6\cdot 10^{-7}s)}
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
\tau_{\text{T-REX}}\lessapprox \frac{15G\lambda}{3.5 G\lambda}\lessapprox 4.2 \text{ min}, \tau_{\text{Coherence, T-REX}}\sim 275 s
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

Systems Design

T^*_{sys} = [T_{rx}+\eta_{ff}T_{b, inc}](1+r)\sim 30K
T_{b,inc}=\frac{F_{tot}A_{eff}}{2k}\sim 3\cdot 10^{-3} K
T_{rx}=15K, \eta_{ff}=0.95, \eta_{A}=0.85, r= 1, F_{tot}\sim 2\pm 0.2 Jy

SEFD

USO

Data

\theta_{\text{Res}}

Orbit

\sigma_{\text{Noise}}
\tau_{\text{max}}
\Delta \phi = 4.3\cdot 10^{-3} \text{ rad } (\text{LISA USO})
L\sim 1\% \text{ (JUICE USO)}
\operatorname{Rate}(\mathrm{bps})\sim 8,750 \text{ GB }(T_{obs}=.5T_{orb}) \text{ over 1 orbit}
\text{Circular Highly-Inclined Polar LEO}, r\sim 400 km, e \sim 0, i>78^{\circ}
66.93s<\tau_{GS}<275s
\text{SEFD}_{\text{T-REX}}=\frac{2kT^*_{sys}}{\eta_A A}\sim 32,000 \text{ Jy}
\theta_{\text{T-REX -BHEX}}\sim 35 \mu as
\theta_{\text{T-REX - EHT}} \sim 1800 \mu as
\sigma_{\text{T-REX - BHEX}}\sim 12.65 \text{ mJy}
\sigma_{\text{T-REX - EHT}}\sim 40 \text{ mJy}

T-REX

T-REX

Antenna

T-REX

Antenna

T-REX

Antenna

T-REX

T-REX

Cryocooler

HiPTC Heat Intercepted Pulse Tube Cooler

T-REX

T-REX

Ultra-Stable Oscillator

T-REX

Ultra-Stable Oscillator

\Delta \phi = 2\pi \cdot f \cdot \sigma_t
\sigma_t = \sigma_f \cdot \Delta t

Phase Error

T-REX

Ultra-Stable Oscillator

\sigma_f = 5\cdot 10^{-11}, f_{obs}=86 \text{ GHz}
\Delta t = 1s:
\sigma_t = 5\cdot 10^{-11} \cdot 1s = 5\cdot 10^{-11} s
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 5\cdot 10^{-11} s=27.01 \text{ rad}
\Delta t = 10s:
\sigma_t = 5\cdot 10^{-11} \cdot 10s = 50\cdot 10^{-11} s
\Delta \phi = 2\pi \cdot (86\cdot 10^9 \text{ Hz}) \cdot 50\cdot 10^{-11} s=270.01 \text{ rad}
\Delta \phi<1 \text{ rad for Phase Coherence}

T-REX

Ultra-Stable Oscillator

Allan Deviation

f=86 \text{ GHz}, t=10s, \sigma_y = 5\cdot 10^{-11}
L = 1-\exp\left[-2\pi^{2}(86\cdot 10^9)^{2}(10)^{2}(5\cdot 10^{-11})^{2}\right]

ABRACON SMD OCXO

L = 1-\exp\left(-2\pi^{2}f^{2}t^{2}\sigma_y^{2}\right)
L\sim 1\%<10\% \text{ required for Phase Coherence}

T-REX

Digital Backend

T-REX

Original Analog Radio Signal

T-REX

Sample the Signal every Unit Interval

f_s\geq 2f

Nyquist-Shannon Sampling Theorem

T-REX

Retain only the samples and record the sign of the voltage for each sample

T-REX

Reconstruct the original signal

T-REX

T-REX

T-REX

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

T-REX ConOps

Optical Terminals

RF Tracking Stations

VLBI Ground Stations

\text{T-REX}

T-REX Data Center

Optical Terminals

RF Tracking Stations

VLBI Ground Stations

\mathbf{T-REX}

T-REX Data Center

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. T-REX Timeline & Funding Deadlines

T-REX

  • Email BHEX Team

Jan 2025

T-REX

  • Email BHEX Team

Jan 2025

T-REX

  • Email BHEX Team

Jan 2025

T-REX

  • Email BHEX Team

Jan 2025

Feb 2025

  • Literature Review

T-REX

  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review
  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant

Rick Fleeter

T-REX

  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)

Ben Hudson

Luke Anderson

  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant

T-REX

  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

May 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)
  • Trained ~6 undergraduates to run simulations on BHEX Mini
  • Jeffrey Olson (Cryocooler Engineer, Lockheed Martin

Jeffrey Olson

  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant

T-REX

Jun 2025

Jul 2025

  • Completed Antenna SWaPC Requirements
  • Obtained Preliminary Grant Funding from Nelson Center
  • Began correspondence with NASA JPL on Ultrastable Oscillators
  • Constrained BHEX Mini SWaPC Requirements
  • Approved by Brown Division of Research as PI for BHEX Mini
  • Submitted to NASA NIAC Phase I Solicitation
  • Accepted to SmallSat Europe 2026

Todd Ely

Joseph Lazio

Eric Burt

  • Email BHEX Team

Jan 2025

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

May 2025

Jun 2025

Jul 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)
  • Trained ~6 undergraduates to run simulations on BHEX Mini
  • Jeffrey Olson (Cryocooler Engineer, Lockheed Martin)
  • Rejected from RISG
  • Completed Antenna SWaPC Requirements
  • Obtained Preliminary Grant Funding from Nelson Center
  • Began correspondence with NASA JPL on Space-Space VLBI
  • Constrained BHEX Mini SWaPC Requirements
  • Approved by Brown Division of Research as PI for BHEX Mini
  • Submitted to NASA NIAC Phase I Solicitation
  • Accepted to SmallSat Europe 2026
  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant

Feb 2025

Mar 2025

  • Literature Review

Apr 2025

May 2025

Jun 2025

Jul 2025

  • Ivy Space Conference
  • Ben Hudson (BHEX, KISPE)
  • Luke Anderson (Orion Space Systems)
  • Trained ~6 undergraduates to run simulations on BHEX Mini
  • Jeffrey Olson (Cryocooler Engineer, Lockheed Martin)
  • Rejected from RISG
  • Completed Antenna SWaPC Requirements
  • Obtained Preliminary Grant Funding from Nelson Center
  • Began correspondence with NASA JPL on Space-Space VLBI
  • Rejected from International Astronautical Congress
  • Constrained BHEX Mini SWaPC Requirements
  • Approved by Brown Division of Research as PI for BHEX Mini
  • Submitted to NASA NIAC Phase I Solicitation
  • Accepted to SmallSat Europe 2026
  • Advised on BHEX Mini by Prof. Rick Fleeter
  • Submit to Rhode Island Space Grant
  • Meeting with MIT Lincoln Labs (8/15)
  • Colloquium at Princeton IAS (9/04)
  • Michael Johnson Colloquium at Brown (PI, BHEX) (9/22) 
  • Assemble Science/Engineering Leadership Team for NASA / CSA

Aug 2025

Sep 2025

  • Accepted as NASA NIAC Finalist
  • Accepted to 10th International VLBI Conference (Sweden)
  • Accepted to Gravitational Wave Conference (Georgia Tech)

💰Funding Deadlines

June

💰Funding Deadlines

$5,000

July

💰Funding Deadlines

$5,000

$175,000

Aug

💰Funding Deadlines

$5,000

$175,000

>$4M

Sep

💰Funding Deadlines

$5,000

$175,000

>$4M

Oct

💰Funding Deadlines

$5,000

$175,000

>$4M

>$400,000

  1. Introduction
  2. What is a black hole?
  3. How do you image a black hole?
  4. How do you record a black hole?
  5. T-REX Primary Science Objectives
  6. T-REX (u,v) Coverage
  7. T-REX Engineering Challenges
  8. T-REX SWaPC Requirements
  9. T-REX Concept of Operations
  10. The Request

T-REX

T-REX NASA NIAC Diagrams

By Ref Bari

T-REX NASA NIAC Diagrams

  • 36