Hyperbolic random graph

Scale-free percolation

Long-range percolation

Age-dependent RCM

Random geom. graph

Nearest-neighbor percolation

Kernel-based spatial random graphs

Four parameters to interpolate/switch

Vertex set

  • Spatial locations,
  • i.i.d. (power-law) weights

Edge more likely if

  • Spatially nearby,
  • High weight

Component sizes: questions and results

  • Largest component \(\mathcal{C}_n^{(1)}\):



     
  • Cluster-size decay:

     
  • Second-largest component:

Questions (finite, supercritical graph)

\mathbb{P}\Big(|\mathcal{C}_n^{(1)}|\le (1-\varepsilon)\mathbb{E}\big[|\mathcal{C}_n^{(1)}|\big]\Big)=
\frac{|\mathcal{C}_n^{(1)}|}{n}\overset{\mathbb{P}}\longrightarrow
\mathbb{P}\Big(|\mathcal{C}_n(0)|\ge k, 0\notin\mathcal{C}_n^{(1)}\Big)=
\mathbb{P}\big(\mathcal{C}(0)=\infty\big)
\exp\big(-\Theta(n^\zeta)\big)
\exp\big(-\Theta(k^\zeta)\big)
|\mathcal{C}_n^{(2)}|=\Theta\big(\phantom{(\log n)^{1/\zeta}}\big)
|\mathcal{C}_n^{(2)}|=\Theta\big((\log n)^{1/\zeta}\big)

Cool stuff, because

  • Largest component \(\mathcal{C}_n^{(1)}\):



     
  • Cluster-size decay:

     
  • Second-largest component:

Questions (finite, supercritical graph)

{\color{lightgray}\mathbb{P}\Big(|\mathcal{C}_n^{(1)}|\le (1-\varepsilon)\mathbb{E}\big[|\mathcal{C}_n^{(1)}|\big]\Big)=}
{\color{lightgray}\frac{|\mathcal{C}_n^{(1)}|}{n}\overset{\mathbb{P}}\longrightarrow}
{\color{lightgray}\mathbb{P}\Big(|\mathcal{C}_n(0)|\ge k, 0\notin\mathcal{C}_n^{(1)}\Big)=}
{\color{lightgray}\mathbb{P}\big(\mathcal{C}(0)=\infty\big)}
\exp\big(-\Theta(n^\zeta)\big)
\exp\big(-\Theta(k^\zeta)\big)
{\color{lightgray}|\mathcal{C}_n^{(2)}|=}\,\, \Theta\big((\log n)^{1/\zeta}\big)

(\(\ge\))3 related quantities,

any value \(\zeta\in(0,1)\).

structural information,

Scale-free percolation

Long-range percolation

Age-dependent RCM

Current status*

Paper I

Paper II

Paper III

(Remaining) Upper bounds,

 *all papers jointly with Júlia Komjáthy and  Dieter Mitsche

Copy of Cluster-size decay

By joostjor

Copy of Cluster-size decay

  • 140