BHEX Mini
A LEO SmallSat Partner to BHEX
Ref Bari

- Mission Statement
- Antenna Diameter Trade Space
- Visibility Amplitudes of Secondary Targets
- Thermal Noise Requirements (Mia)
BHEX Mini

Mission Statement

\textbf{Secondary Science Objective: }\text{Resolve extended black hole structure}
\text{Image black hole accretion disk at low frequency}
\text{Increase number of short Space-Ground baselines}
\text{Achieve first Space-Space VLBI}

Mission Statement


Mission Statement


\sim 10\text{ new VLBI stations to EHT array}
Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}

Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}

\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}

\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}

\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
\text{multi-frequency observations possibly}\\\text{increase coherence time } \Delta t
Mission Statement

\sim 10\text{ new VLBI stations to EHT array}
\text{ connects black hole shadow with jets}

\text{ horizon-scale jet emission is brighter}\\\text{at }86 \text{ GHz than 230 or 345 GHz}
\text{ supplements} (u,v) \text{ coverage at 230}\\ \text{and 345 GHz via FPT}
\text{multi-frequency observations possibly}\\\text{increase coherence time } \Delta t
\text{standalone observations of secondary}\\ \text{ science targets at 86 GHz}
- Mission Statement
- Antenna Diameter Trade Space
- Visibility Amplitudes of Secondary Targets
- Thermal Noise Requirements (Mia)

BHEX Mini
- Mission Statement
- Antenna Diameter Trade Space
- Visibility Amplitudes of Secondary Targets
- Thermal Noise Requirements (Mia)

BHEX Mini









D= 1m
D= 2m
D= 3m
Antenna Diameter Trade Space

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\downarrow
\downarrow
\downarrow
\uparrow
\uparrow
?
?
?
?
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow

\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow

\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow

\mathrm{SEFD}_S=\frac{2 k_{\mathrm{B}} T_{\mathrm{sys}}^*}{\eta_{\mathrm{A}} A}



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow

\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow

\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow

\sigma_{GS}=\frac{1}{\eta_{\mathrm{Q}}} \sqrt{\frac{\mathrm{SEFD}_{\mathrm{G}} \mathrm{SEFD}_{\mathrm{S}}}{2 \Delta \nu \Delta t}}



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow




\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow



\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t
\downarrow




\theta_{beam} = 1.22 \frac{\lambda}{D}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow






\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{BHEX Mini Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow






\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow






\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{BHEX Mini Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow


\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow






\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\downarrow
\downarrow
\downarrow
\uparrow
\uparrow
?
?
?
?

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

\text{Solar Flux}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

\text{BHEX Mini Area}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

\text{Absorptivity}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

\text{Eclipse Factor}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

\text{Eclipse Factor}
f_{\text{eclipse}}(t) = \begin{cases}
0 & \text{satellite in Earth's shadow} \\
0.5 & \text{satellite in penumbra (partial shadow)} \\
1 & \text{satellite in full sunlight}
\end{cases}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

f_{\text{eclipse}}(t) = \begin{cases}
0 & \text{satellite in Earth's shadow} \\
0.5 & \text{satellite in penumbra (partial shadow)} \\
1 & \text{satellite in full sunlight}
\end{cases}
\phi(t) = \frac{2\pi t}{T_{\text{orbit}}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

f_{\text{eclipse}}(t) = \begin{cases}
0 & \text{satellite in Earth's shadow} \\
0.5 & \text{satellite in penumbra (partial shadow)} \\
1 & \text{satellite in full sunlight}
\end{cases}
Q_{\text{net}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

f_{\text{eclipse}}(t) = \begin{cases}
0 & \text{satellite in Earth's shadow} \\
0.5 & \text{satellite in penumbra (partial shadow)} \\
1 & \text{satellite in full sunlight}
\end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

f_{\text{eclipse}}(t) = \begin{cases}
0 & \text{satellite in Earth's shadow} \\
0.5 & \text{satellite in penumbra (partial shadow)} \\
1 & \text{satellite in full sunlight}
\end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t)
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

f_{\text{eclipse}}(t) = \begin{cases}
0 & \text{satellite in Earth's shadow} \\
0.5 & \text{satellite in penumbra (partial shadow)} \\
1 & \text{satellite in full sunlight}
\end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}}
\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{BHEX Mini Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow

f_{\text{eclipse}}(t) = \begin{cases}
0 & \text{satellite in Earth's shadow} \\
0.5 & \text{satellite in penumbra (partial shadow)} \\
1 & \text{satellite in full sunlight}
\end{cases}
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}

\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}

\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
Q_{\text{Earth-IR}} = \varepsilon \cdot \sigma \cdot T_E^4 \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}}
\text{BHEX Mini Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

\uparrow
Q_{\text{net}}(t) = Q_{\text{solar}}(t) + Q_{\text{albedo}}(t) + Q_{\text{Earth-IR}} - Q_{\text{cooling}}
Q_{\text{solar}} = \alpha_s \cdot S \cdot A_{\text{proj}} \cdot \cos(\theta) \cdot f_{\text{eclipse}}
Q_{\text{albedo}} = \alpha_s \cdot S \cdot A_f \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}} \cdot f_{\text{eclipse}}
Q_{\text{Earth-IR}} = \varepsilon \cdot \sigma \cdot T_E^4 \cdot F_{\text{Earth-sat}} \cdot A_{\text{spacecraft}}
Q_{\text{cooling}} = \varepsilon \cdot \sigma \cdot T_{\text{sat}}^4 \cdot A_{\text{total}}

\text{Thermal Load } P
\text{Coherence Time } t

\uparrow



\text{Thermal Load } P
\text{Coherence Time } t

\uparrow

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

P = \Phi \cdot A \cdot \alpha \cdot f
\uparrow



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow
- Technology Readiness Level (TRL)
- Areal Density
- Material of Antenna
- Type of Antenna
- Surface Accuracy

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow
- Technology Readiness Level (TRL)
- Areal Density
- Material of Antenna
- Type of Antenna
- Surface Accuracy

\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow


\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow



\text{SEFD}\\
\text{Thermal Noise } \sigma_{GS},\sigma_{SS}
\text{Beam Size } \theta_{FOV}
\text{Mass } M
\text{Thermal Load } P
\text{VLBI Coverage } (u,v)
\text{Data Transmission Rate } R
\text{Coherence Time } t

M = \sigma \cdot (\pi D^2/4)
\uparrow








BHEX Mini | 05/22 Update
By Ref Bari
BHEX Mini | 05/22 Update
Calculating Visibility Amplitudes for Secondary Science Targets for BHEX Mini Mission Proposal
- 68